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Abstract

Modern cryptography is concerned with the feasibility or infeasibility of securely
realizing a task. The answer to whether or not a task can be securely realized
depends on the assumed power of the adversary. The obtained security holds in a
strong mathematical sense, meaning that breaking a secure cryptographic protocol
is either impossible or it would require to solve some computational problem which
is believed to be hard to solve. The most basic computational assumption made in
cryptography is the existence of one-way functions. One-way functions are functions
that are easy to compute but are hard to invert on almost all inputs.

By just assuming the existence of one-way functions it is already possible to
realize many cryptographic tasks, but there are some tasks that can only be realized
by assuming the existence of trapdoor functions (also called backdoored functions).
Trapdoor functions are easy to compute in one direction but hard to invert; the
difference is the existence of a special value that allows the function to be easily
inverted by any party that has knowledge of this special value.

In this thesis we have contributions in three different facets of backdoors in
cryptography, that we describe next.

• Backdoors for legitimate usage: We define a new security goal for chameleon
hash functions that we call enhanced collision resistance. This security defi-
nition informally says that a chameleon hash function must remain collision-
resistant even after an adversary sees polynomially many collisions for the
function. We also present a novel transformation from standard chameleon
hash functions to enhanced ones; a full-fledged “redactable blockchain” ap-
plication, that leverages the power of enhanced collision-resistant chameleon
hashes, is built to show that this new security goal for chameleon hashes makes
sense in practice.

• Backdoors for malicious usage: Motivated by the revelations of Edward Snow-
den about intelligence agencies intentionally undermining the security of cryp-
tographic schemes, we cover the case where backdoors are used to perform
attacks against signature schemes. In this vein, we define what is an unde-
tectable subversion attack against a signature scheme and we also present
two devastating attacks against randomized signature schemes that allows the
complete extraction of the users’ signing key.

• Immunization techniques against malicious backdoors: Our contributions in
this vein are twofold. We first show positive results for signature schemes
against subversion attacks; we prove that unique signatures are secure against
an undetectable class of subversion attacks and that re-randomizable signa-
tures are secure against all classes of subversion attacks (by employing a
cryptographic reverse firewall introduced in this thesis). In the other con-
tribution on the immunization direction we define a secure model for the
outsourcing of circuit fabrication, where the outsourcing facilities are untrusted
and can potentially embed malicious hardware trojans in the circuit. We
construct three compilers that upon input an arbitrary circuit it produces an
outsourcing-secure version of the circuit.
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Introduction

When we talk about cryptography, the first thing that comes to mind is secret
communication. Before the last few decades of the 20th century that perception was
indeed accurate, and cryptography was considered more of an art than a science.
After that period the landscape drastically changed, and modern cryptography was
born, encompassing much more than just secret communication, and allowing many
marvellous possibilities that were unimaginable before, such as play a fair game of
poker over the telephone [SRA81].

Modern cryptography is concerned with the feasibility or infeasibility of securely
realizing a task. The answer to whether or not a task can be securely realized often
depends on the assumed power of the adversary. The obtained security holds in a
strong mathematical sense, meaning that breaking a secure cryptographic protocol
is either impossible or it would require to solve some computational problem which
is believed to be hard to solve. Those mathematical guarantees only became possible
by leveraging the tools of computational complexity theory and by defining formal
models and methods when analyzing cryptographic schemes.

Computational complexity theory is the study of “how hard” it is for a computer
to find a solution to a problem; if there exists an algorithm that solves the problem
in polynomial-time,1 we say that the problem is easy to solve. It is highly believed
(although not proved) that there exists some types of problems that are not easy to
solve, but it is easy to verify that a given solution to the problem is correct (these
problems are in the complexity class called NP). One well-known example is the
integer factorization problem; given a positive integer n compute its prime factors.
No polynomial-time algorithm for such a problem is known, and if we take n to be a
huge number (e.g. > 1024-bits) it would take a lifetime for a computer to find the
answer using the fastest known algorithm.2 On the other hand, given the prime

1A polynomial-time algorithm is an algorithm whose running time (number of steps) can be
expressed as a polynomial of any degree.

2The fastest algorithm known for integer factorization is the general number field sieve, and it
runs in sub-exponential time [LJMP90] on the size of the input.
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factors of n we can simply multiply them and see if the result is in fact n.
In modern cryptography we use those types of assumptions (such as integer fac-

torization) to build cryptographic schemes and to give some mathematical assurances
of how long it would take for an adversary3 to violate the security guarantees of the
scheme (or more informally, to “break” the scheme). This is usually accomplished
with a technique borrowed from computational complexity theory, called reduction;
the intuition behind it is as follows. We first assume that an adversary that breaks
the cryptographic scheme exists, and then we build a (polynomial-time) algorithm
that runs the adversary and in the end outputs a solution to the underlying hard-
problem. But wait a minute! how can this polynomial-time algorithm solve the hard
problem if there is no known polynomial-time algorithm that solves the problem?
That is exactly the point! therefore, the adversary that breaks the scheme cannot
exist, otherwise the adversary can solve the hard-problem, which is a contradiction
since we assume that the problem is hard to solve.

The most basic computational assumption in cryptography is the existence of
one-way functions (OWF). One-way functions are the type of functions that are easy
to compute but are hard to invert on almost all inputs. The integer factorization
problem previously described is believed to be a one-way function. We call it an
assumption because so far nobody has been able to prove this to be true or false. In
fact, proving the existence of one-way functions would solve the long-lasting open
problem in computer science P vs NP [Sip92].

By just assuming the existence of one-way functions it is possible to realize
many cryptographic tasks such as, symmetric encryption, message authentication
codes, pseudorandom number generators, pseudorandom functions, digital signa-
tures [Lam79] and more. This is already very exciting and useful in many scenarios,
but there are some situations in which this is not enough. If we consider the sym-
metric encryption for instance, one may ask how the secret key used in this scheme
is agreed between the parties; unfortunately this is a problem that cannot be solved
by just assuming the existence of one-way functions [IR88]. To solve this problem
we need to add another assumption into the mix which is the existence of trapdoor
functions. Similar to one-way functions, trapdoor functions are easy to compute in
one direction but hard to invert; the difference is the existence of a special value (i.e.
the trapdoor) that allows the function to be easily inverted by any party that has
knowledge of this special value. Trapdoors can also be called backdoors, and in this
thesis we use both names interchangeably.

To show a little better how the assumptions considered can completely rule out
(or make it possible) some exciting cryptographic applications we briefly discuss the
seminal paper of Impagliazzo [Imp95]. In [Imp95], five different worlds are presented,
each considering a different assumption as true and discussing the implications of it.
We give a brief description of each world next. (i) Algorithmica is the world where
P = NP. This is a bad world for cryptography because any problem such that its
solution can be verified in polynomial-time can also be solved in polynomial-time.
(ii) In Heuristica, there are hard instances of NP problems but it is also hard to
find such instances. This is also a bad world for crypto. (iii) Pessiland is the world
where there are hard average-case problems but there are no one-way functions. This

3An adversary is considered to be any third party trying to undermine the cryptographic scheme.
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means that any function can be inverted for almost all values of input, therefore
all crypto based on the existence of one-way functions would be broken. (iv) In
Minicrypt one-way functions do exist, but there are no trapdoor functions. In this
world things start to get more interesting for cryptography, as it is now possible
to have all cryptographic primitives that rely only on one-way functions, such as
symmetric encryption, signature schemes, and etc. (v) In Cryptomania there exist
trapdoor functions (and one-way functions). This is the world that we believe to
live in; we can realize all the tasks of Minicrypt in addition to every primitive that
depends on trapdoor functions, such as key-agreement, public key encryption and
more.

1.1 Backdoors & Cryptography

Trapdoor functions have many fundamental usages in cryptography, ranging from
public key encryption to chameleon hash functions.

Most of the times trapdoors are used with a good intent, such as in public-
key encryption, although there are some situations where the use of trapdoors are
targeted at gaining some unwarranted advantage over the users of the scheme; the
knowledge of the trapdoor may allow, for instance, to recover the secret signing key
in a (backdoored) signature scheme. The dangers of such backdoored cryptographic
primitives are evident and devastating for the security of the schemes, therefore
some immunization techniques might be applied to those backdoored primitives in
order to still maintain some level of security.

In this section we present concrete examples of all three scenarios, where trapdoors
are used for the good, for the bad, and also some (not so ugly) immunization
techniques.

1.1.1 Good Intentions

The use of backdoors in cryptography is quite widespread, and many primitives
could not exist without it. Although there are many legitimate uses of backdoors,
such as in public key encryption or key-agreement, in this thesis we focus more
on primitives that do not depend on the backdoor directly, but its use gives the
primitive an extra functionality that is essential to some application (e.g. chameleon
hash functions).

Trapdoor generators. Vazirani and Vazirani [VV83] started in 1983 the study of
backdoored psedurandom number generators (PRG) to build a secure 1-bit disclosure
protocol. This type of protocol is used when one party wants to disclose a single bit
of information to some other party in exchange of a receipt.

A backdoored PRG behaves exactly like a standard PRG when one does not
know the backdoor (i.e. the output sequence of the PRG is indistinguishable from a
random sequence), but the knowledge of the backdoor allows to easily predict the
output sequence.
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Chameleon hash functions. The concept of chameleon hashing was put forward
by Krawczyk and Rabin [KR00], building on the notion of chameleon commit-
ments [BCC88]. Informally, a chameleon hash is a cryptographic hash function that
contains a trapdoor: Without the trapdoor it should be hard to find collisions, but
knowledge of the trapdoor information allows to efficiently generate collisions for
the hash function.

1.1.2 Bad Intentions

In this section we describe previous works on the topic of backdoored cryptographic
primitives that are built with the intention of subverting the security of the underlying
scheme. The most extreme case is when the backdoor allows for the extraction of
the users’ secret key (i.e. a total break).

Subliminal channels. Subliminal channel attacks were introduced in 1983 by
Simmons [Sim83]. The prisoners’ problem described in [Sim83] is related to two
prisoners kept in different cells that need to coordinate an escape plan. The
prisoners can only communicate through the prison warden, that relays unencrypted
messages back and forth among the prisoners. Simmons shows how the prisoners
can successfully coordinate an escape plan without the warden noticing, by cleverly
substituting parameters in the signature algorithm used to authenticate the prisoners.

After its introduction, the potential of subliminal channels has been explored in
several works (e.g., [Des88a,Des88b,BDI+99]).

Kleptography. The ability of substituting a cryptographic algorithm with an
altered version was first considered formally by Young and Yung (extending previous
works of Simmons on subliminal channels [Sim83, Sim84]), who termed this field
kleptography [YY96,YY97]. The idea is that the attacker surreptitiously modifies a
cryptographic scheme with the intent of subverting its security. Kleptography tries
to leak the secret information from cryptographic protocols that do not have an
explicit subliminal channel. The leakage instead occurs by using “implicit channels”
created through repetitive correlated usage of the protocol.

Subversion attacks. Inspired by the recent revelations of Edward Snowden [PLS13,
BBG13,Gre14], research in the kleptography area has recently been revitalized by
Bellare et al. [BPR14] who considered encryption algorithms with the possibility of
mass surveillance under the algorithm-substitution attack. They analyzed the possi-
bility of an intelligence agency substituting an encryption algorithm with the code
of an alternative version that undetectably reveals the secret key or the plaintext.
What they uncovered is that any randomized and stateless encryption scheme would
fall to generic algorithm-substitution attacks. The only way to achieve a meaningful
security guarantee (CPA-security) is to use a nonce-based encryption that must
keep state. Unfortunately, only stateless schemes are deployable effectively with the
current network technology and indeed all deployed encryption algorithms are in
this class. After that, many results followed [DFP15,DGG+15,AMV15] constructing
several concrete primitives resisting large classes of subversion attacks.
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1.1.3 Immunization Techniques

In this section we describe some previous works targeted at immunizing backdoored
primitives, in order to maintain some level of security, even in the presence of a
malicious backdoor.

Backdoored PRG. Many years after the introduction of backdoored PRGs [VV83],
Dodis et al. [DGG+15] formalized the notion and showed how backdoored PRGs
(BPRGs) can be used in a malicious way. They also presented new constructions
and immunization techniques for BPRGs. The immunization is a post-processing of
the BPRG output, in a way that the adversary can no longer predict the output of
the BPRG, even knowing the trapdoor. This immunization technique allows for the
user to maintain the security of the BPRG when the backdoor was inserted by a
malicious adversary.

Cryptographic reverse firewall. A cryptographic reverse firewall [MS15,DMS16]
is a piece of hardware (or software) that sits between the user and the external world.
The concept was introduced by Mironov and Stephens-Davidowitz [MS15] and its
goal is to avoid the leakage of secret information in compromised cryptographic
protocols. The firewall “sanitizes” all the messages exchanged between the users’
computer and the outside world. A secure cryptographic reverse firewall contains no
secret information in itself and needs to satisfy the following properties. (i) Maintain
the functionality of the cryptographic protocol being used, (ii) preserve the security
of the underlying protocol, and (iii) resist exfiltration of any secret to the outside
world.

1.2 Contributions
In this section we give a concise description of the contributions of this thesis. We
have contributions in all three use cases of backdoors in cryptography that we
describe next.

1.2.1 The Good

For our contribution on the use of backdoors for good purposes we focus on chameleon
hash (CH) functions. Informally, a chameleon hash is a cryptographic hash function
that contains a trapdoor: Without the trapdoor it should be hard to find collisions,
but knowledge of the trapdoor allows to efficiently generate collisions for the hash
function.

Unfortunately, as observed by Ateniese and de Medeiros [AdM04], collision
resistance is not sufficient for most of the applications of chameleon hash. The
reason is that, while the hash function is indeed collision resistant, any party seeing
a collision for the hash function would be able to find other collisions or even recover
the secret trapdoor information. This “key exposure” problem makes chameleon
hashes not applicable in many contexts. We introduce and formalize the notion of
enhanced collision resistance for chameleon hash functions, where collisions are hard
to compute by an adversary even after seeing polynomially many collisions.
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To the best of our knowledge, the only chameleon hash function satisfying the
enhanced collision resistance property is due to Ateniese and de Medeiros [AdM04];
this construction is ad-hoc and relies on the Nyberg-Rueppel signature scheme [NR94].
We present a generic transformation that turns (almost) any collision resistant
chameleon hash function into an enhanced collision resistant one; this transformation
holds in the standard model and relies only on CPA-secure public-key encryption
(PKE) and tSE non-interactive zero-knowledge (NIZK) (cf. Section 3.2). Prior to
our work it was unknown whether enhanced collision resistance can be achieved
in a non ad-hoc fashion in the standard model. We answer this question in the
affirmative.

Lastly, as an application for the enhanced collision chameleon hash, we present
a new design for a redactable blockchain which is compatible with all popular
blockchain proposals. The main feature of our system is that it is compatible with
current blockchain designs, i.e., it can be implemented right now and requires only
minimal changes to the way current client software interprets information stored in
the blockchain, and to the current blockchain, block, or transaction structures.

A blockchain is just a sequence of blocks Bi = 〈si, xi, ctr i〉, where s ∈ {0, 1}κ,
x ∈ {0, 1}∗ and ctr ∈ N. The blocks are linked through the relation si =
H(G(si−1, xi−1), ctri), where H : {0, 1}∗ → {0, 1}κ and G : {0, 1}∗ → {0, 1}κ
are collision-resistant hash functions. If any of the previous blocks are changed the
chain breaks down. The main idea behind our approach is to set the inner hash
function (i.e., the function G), used to chain the blocks in the blockchain, to be
an enhanced collision resistant chameleon hash function. Intuitively, re-writing the
content of each block is possible by finding collisions in the hash function (without
modifying the outer hash function H). This application is described in details in
Section 3.3.

1.2.2 The Bad

For our contribution on the malicious use of backdoors, we analyze digital signature
schemes under the so-called subversion attacks (SAs), that in particular include
algorithm-substitution and kleptographic attacks as a special case, but additionally
cover more general malware and virus attacks. We stress that our intention is not
to propose schemes that can be abused by criminals to avoid monitoring. We are
motivated by pure scientific curiosity and aspire to contribute to an active field of
research.

On the setting of signature schemes, we define what it means for a class A of SAs
to be (efficiently) undetectable; roughly this means that a user, given polynomially
many queries, cannot distinguish the output of the genuine signature algorithm from
the output of the subverted algorithm. See Section 4.2 for a precise definition. Our
definitions of undetectability are similar in spirit to the ones put forward by [BPR14]
for the setting of symmetric encryption. Importantly we distinguish the case where
the user (trying to detect the attack) knows only public or private information (i.e.,
it knows the secret key).4

4As we show, secret and public undetectability are not equivalent, in that there exist natural
classes of SAs that are publicly undetectable but secretly detectable.
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Next, we explore the possibility of designing classes of SAs that are (even
secretly) undetectable and yet allow for complete security breaches. This direction
was already pursued by Bellare et al., who showed that it is possible to stealthily
bias the random coins of sufficiently randomized symmetric encryption schemes in
a way that allows to extract the secret key after observing a sufficient number of
(subverted) ciphertexts. As a first contribution in this direction, we explain how to
adapt the “biased randomness attack” of [BPR14] to the case of signature schemes.

The above generic attack requires that the signature scheme uses a minimal
amount of randomness (say, 7 bits). This leaves the interesting possibility that
less randomized schemes (such as the Katz-Wang signature scheme [KW03], using
only one bit of randomness) might be secure. In Section 4.3.2, we present a new
attack showing that this possibility is vacuous: Our attack allows to stealthily bias
the randomness in a way that later allows to extract the signing key—regardless
of the number of random bits required by the scheme—assuming that the targeted
signature scheme is coin-extractable. The latter roughly means that the random
coins used for generating signatures can be extracted efficiently from the signature
itself; as we discuss in more detail in Section 4.3.2 many real schemes (including
Katz-Wang) are coin-extractable. A subversion attack against signature schemes
that are not coin-extractable, and with short randomness is still unknown.

1.2.3 The (not so) Ugly

We have two main contributions in immunization against backdoors in cryptography.
The first is concerned with signature schemes, where we show how to sign securely
even when the signing algorithm is subverted by a malicious adversary. For the
second contribution we put forward a formal framework for assessing security of a
cryptographic circuit whose production has been, in part, outsourced to a set of
manufacturers that are not trusted.

Immunization for Signature Schemes.

Following from our subversion attacks on signature schemes (cf. Section 4.3), we
present our first positive result for immunization against such type of attacks, where
we show that fully deterministic schemes with unique5 signatures are existentially
unforgeable under chosen-message attacks against the class of SAs that satisfies the
so-called verifiability condition.6 This means that—for all values in the message
space—signatures produced by the subverted signature algorithm should (almost
always) verify correctly under the target verification key (note that both attacks
mentioned above fall into this category).

Clearly, the assumption that the verifiability condition should hold for all messages
is quite a strong one. Hence, we also relax the verifiability condition to hold for all but
a negligible fraction of the messages. However, we are not able to prove that unique
signatures achieve existential unforgeability under chosen-message attacks against the

5A signature scheme is unique if for an honestly generated verification key there is a single valid
signature for each message.

6One might ask whether a similar result holds for all deterministic schemes where signatures are
not unique; the answer to this question is negative as our attacks also apply to certain types of
deterministic schemes (e.g., de-randomized schemes—see the proof of Theorem 4 in Section 4.4.2).
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class of SAs that satisfies relaxed verifiability.7 Instead, as our second positive result,
we show that unique signatures are existentially unforgeable under random-message
attacks (where the adversary can only see potentially subverted signatures of random
messages) against the class of SAs that satisfies relaxed verifiability. Interestingly,
this weaker security flavor is still useful for applications. In Section 5.1.4 we show how
to construct subversion-resilient identification schemes from such unique signature
schemes.

As our third positive result, we provide a way how to achieve the ambitious goal
of protecting signature schemes against arbitrary SAs, relying on a cryptographic
reverse firewall. We prove that every signature scheme that is re-randomizable (as
defined in [HJK12]) admits a RF that preserves unforgeability against arbitrary
SAs. Re-randomizable signatures admit an efficient algorithm ReRand that takes as
input a tuple (m,σ,VK) and outputs a signature σ′ that is distributed uniformly
over the set of all valid signatures on message m (under VK ); unique signatures, for
instance, are re-randomizable. Upon input a pair (m,σ) our firewall uses the public
state to verify (m,σ) is valid under VK , and, in case the test passes, it runs ReRand
on (m,σ) and outputs the result. Otherwise the firewall simply returns an invalid
symbol ⊥ and self-destructs, i.e., it stops processing any further query.8 The latter
is a requirement that we prove to be unavoidable: No RF can at the same time
maintain functionality and preserve unforgeability of a signature scheme without
the self-destruct capability.

We remark that our results and techniques for the setting of RFs are incomparable
to the ones in [MS15]. The main result of Mironov and Stephens-Davidowitz is
a compiler that takes as input an arbitrary two-party protocol and outputs a
functionally equivalent (but different) protocol that admits a RF preserving both
functionality and security. Instead, we model directly security of RFs for signatures
schemes in the game-based setting; while our goal is more restricted (in that we only
design RFs for signatures), our approach results in much more efficient and practical
solutions.

Lastly, we give a concrete construction of a new tightly secure unique signature
scheme based on the quadratic residuosity problem. The scheme is based on a lossy
function from [FGK+13], and its security proof follows from the surprising result of
Kakvi and Kiltz [KK12], where they show that a unique signature scheme can have
a tight security proof if the function is lossy. The scheme is the first of its kind to
have a tight security proof based on a standard assumption (in the random oracle
model).

Secure circuit fabrication.

We put forward a formal framework for assessing security of a circuit whose produc-
tion has been, in part, outsourced to a set of manufacturers that are not trusted. With

7In fact, as shown very recently by Degabriele et al. [DFP15] for the case of symmetric encryption,
it is not hard to show that such limitation is inherent: No (even deterministic) scheme can achieve
security under chosen-message attacks against the class of SAs that meets relaxed verifiability. See
Section 1.3 for more details.

8This can be implemented, for instance, by having the public state include a single one-time
writable bit used to signal a self-destruct took place.
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such a framework in hand, we give two design methodologies. Our first methodology
borrows ideas from the setting of verifiable computing (see, e.g., [GGP10]), while
the second one relies on secure multiparty computation (see, e.g., [GMW87]) in the
client-server model [Bea97]. A more detailed explanation of our main contributions
in this direction follows below.

Let Γ be the original circuit to be produced. Instead of producing Γ directly, we
first “compile” it into a different circuit Γ̂ using an efficient, possibly randomized,
procedure Φ that we call an outsourcing compiler. The compiler Φ takes as input
a description of Γ and returns a description of Γ̂, together with some auxiliary
information specifying how Γ̂ can be divided into sub-components, and which
of these components can be produced off-shore; the remaining components will
be instead built in-house. After all components have been produced, the circuit
designer re-assembles the circuit Γ̂ (by combining the outsourced components and
the components built in-house), which is then initialized with some initial secret
memory M1, and used in the wild.

In order to make sense, the above approach needs to satisfy a few important
requirements. The first requirement is that Φ needs to be functionality preserving,
meaning that the compiled circuit Γ̂ should compute the same functionality as
the original circuit Γ (for all possible initial memories M1, and for all possible
inputs). The second requirement is that the effort needed to fabricate the trusted
sub-components should be (much) less compared to the effort required to build
the original circuit Γ. The third requirement is that Φ should be secure, meaning
that, under an acceptable assumption about the manufacturers who construct
the outsourced components, the produced circuit Γ̂ can be safely used in real-life
applications.

Our security definition follows the simulation paradigm, and is inspired by similar
definitions in the setting of tamper-proof circuit compilers [IPSW06,FPV11]. We
refer the reader to Section 1.3 for a more detailed comparison between the two
approaches. In a nutshell, security of Φ is defined by requiring that whatever an
adversary can learn by interacting with the fabricated circuit Γ̂ (produced following
the steps outlined above), can be simulated given only black-box access to the original
circuit Γ. This essentially means that, no matter how the outsourced components
are maliciously modified (e.g., by inserting a hardware Trojan), using circuit Γ̂ is as
secure as using the original circuit Γ, and thus, in particular, does not leak sensitive
information on the secret memory. See Section 5.3.1 for a precise definition.

We also consider a weakening of the above definition, in which the simulator is
allowed to receive a short advice (or leakage) on the secret memory M1. This models
a setting where the adversary might be able to learn a short amount of information
on the secret memory, but still yields a meaningful security guarantee provided that
the original circuit is resilient to such a short leakage. An appealing advantage of
this weaker definition is that it might allow for significantly more efficient circuit
compilers.

A solution using VC. In Section 5.3.2, we show how to construct secure outsourc-
ing compilers that work for arbitrary circuits Γ in the setting where all outsourcing
manufacturers are corrupted. Our compilers generically leverage a verifiable com-
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putation (VC) scheme for the function F implemented by Γ. Verifiable computing
(see, e.g., [GGP10]) is a recent paradigm by which resource-constrained clients can
delegate the computation of some function F , on (possibly private) input X, to an
untrusted (and computationally powerful) server, without the server being able to
cheat about the outcome of the computation, and with the property that verifying
the server’s answer is much more efficient than computing the function from scratch.

Recent breakthrough research on verifiable computing led to nearly practical
schemes that work for any function [PHGR13,CFH+15]; some schemes additionally
preserve the privacy of the inputs on which the function is being computed on [FGP14].
VC schemes satisfying the latter property are called input-private.

The main idea of how to use verifiable computing in order to build secure
outsourcing compilers is simple enough to describe it here. The entire bulk of the
computation will be outsourced to the untrusted fabrication facility, whereas the
only circuit components that need to be built in-house are: (i) the component
corresponding to the algorithm for encoding the inputs (in case of input-private VC),
(ii) the component corresponding to the algorithm run by the client in order to verify
correctness of the server’s computation, and (iii) the component used to generate
fresh random coins as needed for computing the function (in case of randomized
functions). Thanks to the nature of VC, the size of the components in (i) and (ii) is
independent of the size of the original circuit computing the function. As for the
component in (iii), we can use any existing (and trusted) circuitry for generating
true random numbers (RNG). A good example is the Intel on-chip hardware random
number generator which can be accessed through the RDRAND instruction available
on all modern processors [JK99,HKM12].9

Hence, the effort needed to fabricate the components built in-house is much less
(and, in fact, independent) of the effort needed to fabricate the original circuit.

We implement the above idea in two ways, depending on the properties satisfied
by the underlying VC scheme, as explained below.

• Our first compiler relies on VC schemes with input-privacy, and achieves our
strongest security notion (i.e., no leakage required for the simulation).

• Our second compiler relies on VC schemes without input-privacy, and achieves
security provided the original primitive (implemented by the circuit Γ) is
resilient against a logarithmic amount of leakage on the private memory.
Remarkably, any public-key encryption or signature scheme is resilient to such
an amount of leakage at the price of a polynomial loss in the concrete security,
and recently many leakage-resilient schemes [DP08, Pie09,KV09,DHLW10,
NS12, BSW13, NVZ14, FNV15] have been constructed, where the concrete
security does not degrade with the total amount of tolerated leakage.

The second compiler additionally relies on a special “self-destruct” feature (which
is implemented in one of the components built in-house), meaning that after the first
invalid output is ever processed, the entire memory is overwritten. As we show, for

9Intel’s generator relies on unpredictable thermal noise to generates bits that are fed to a
cryptographic “conditioner” (AES in CBC-MAC mode) which produces a 256-bit seed that is then
passed through a NIST SP800-90A-based pseudorandom generator.
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this compiler, this is an inherent requirement, in that, without such a property, there
exist generic attacks that allow to recover the entire private memory. Moreover, such
attacks are undetectable by all polynomial-time (black-box) tests. Our definition of
undetectability (see Section 5.3.1) is similar in spirit to analogous definitions in the
context of subversion-resilient cryptography 4.2.

A solution using MPC. In Section 5.3.3, we show how to construct secure
outsourcing compilers for arbitrary circuits Γ in the setting where m ≥ 2 outsourcing
manufacturers are available, and a certain unknown subset of them is untrustworthy.
This is a strictly stronger assumption compared to the VC setting, nevertheless, opens
the possibility for more efficient constructions and stronger availability guarantees.
Our compiler utilizes a general client-server secure multiparty computation (MPC)
protocol, i.e., a protocol that for any function enables a set of clients to privately
communicate their inputs to a set of servers that will perform a computation and
return the output to a single designated recipient.

We stress that many MPC protocols follow this paradigm (e.g., [DI05]), while
others, as we comment later, can be easily adapted to it.

Given such a protocol, the compiler operates as follows. For a given circuit Γ
it produces the MPC protocol implementing it, isolates the client and recipient
computation for manufacturing in-house, and outsources each of the other compo-
nents (representing a server in the MPC protocol) to the untrusted manufacturers.
The key points of this compiler construction are as follows: (i) The client and
recipient computation are typically quite lightweight; the client, in many protocols,
simply performs an encryption or a secret-sharing operation, and the recipient a
secret-reconstruction protocol; in either case, the computation is independent of
the circuit that is outsourced. (ii) There are MPC protocols that can tolerate up
to m − 1 malicious servers, something we can leverage to argue that if at least
one of the outsourcing manufacturer is honest the compiled circuit would be safe
for use. Additional properties of the underlying MPC protocol can also be very
valuable by our compiler: for instance, if the underlying MPC protocol supports
guaranteed output delivery, we can use this guarantee to argue that the final circuit
will be resilient to a certain faulty outsourced sub-component. Moreover, if the
underlying protocol satisfies the identifiable abort property, cf. [IOZ14], we can
enable our compiled circuit to partially shutdown an outsourced sub-component
that is discovered to be faulty, thus reducing energy consumption. By adapting an
efficient protocol, e.g, [DPSZ12], in the client-server model, we can provide a very
efficient compiled circuit (with an overhead linear in the size of the original circuit
|Γ|).

A remark. Both our approaches require a partitioning and assembly procedure
that must be performed in-house. To lower the cost, trusted and untrusted sub-
circuits will likely be diced in their own wafers and packaged independently. Fortu-
nately, recent advanced designs and emerging technologies in the electronics assembly
and packaging industry are making the entire process of interconnecting different
components more affordable, reliable, and automatic.
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1.3 Related Work

In this section we discuss related works concerning all the three previously described
usages of backdoor in cryptography.

Stateless subversion attacks. Bellare et al. [BJK15] introduced a stronger
definition of undetectability for subversion attacks where the user trying to detect a
subverted scheme can query messages to the signing oracle and receive as output a
pair (σ, τ) containing the signature and the state; since the original signature scheme
is stateless the state τ will always be empty (represented by the empty string ε) when
querying the original signing algorithm. This way, any stateful subversion can be
easily detected by checking whether τ = ε. Moreover, the “biased randomness attack”
from [BPR14] is modified into a stateless version, so it can remain undetectable
under this stronger undetectability definition.

Input-triggered subversions. In a very recent paper, Degabriele, Farshim and
Poettering (DFP) [DFP15] pointed out some shortcomings of the Bellare-Patterson-
Rogaway (BPR) [BPR14] security model for subversion resilience of symmetric
encryption schemes. Consider the class of SAs that upon input a secret (trapdoor)
message m̄ outputs the secret key, but otherwise behaves like the genuine signature
algorithm. Clearly this class of SAs will be undetectable by the users, as without
knowing the trapdoor there is only a negligible chance to query the secret message
m̄ and check if the signature algorithm was subverted (at least if the message space
is large enough). Yet, an adversary mounting a chosen-message attack can recover
the signing key by asking a signature for message m̄.

As a consequence, it is impossible to prove existential unforgeability under-chosen
message attacks against such “input-triggered” subversions (in the BPR model).
Note however that, for the case of signatures, one can still prove a positive result
by restricting the adversary to only see signatures of random messages (i.e., in case
of a random-message attack). Indeed, input-triggered subversions meet our notion
of relaxed verifiability (see Section 5.1) and thus our positive results for unique
signatures apply to such case.

The solution proposed by DFP is to modify the definition of undetectability so
that the adversary (and not the user) specifies the input messages to the (potentially
subverted) encryption algorithm, whereas the goal of the user is to detect the attack
given access to the transcript of all queries made by the adversary (and answers to
these queries). Hence, a scheme is said to be subversion-resilient if there exists a
fixed polynomial-time test algorithm such that either a subversion attack cannot be
detected efficiently but it does not leak any useful information, or it is possible to
efficiently detect that the system was subverted.10

It is possible to make a similar change as in [DFP15] and adapt the DFP model
to signature schemes in order to achieve security under chosen-message attacks. The
end result would share some similarities with our approach using cryptographic

10For instance, in case of the attack outlined above, the polynomial-time test could simply decrypt
the ciphertext and check the outcome matches the input message.
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RFs;11 however, our framework provides notable advantages. First, note that the
DFP model does not provide any guarantee against SAs that are efficiently detectable,
whereas our RF model explicitly accounts for the actions to be taken after an attack is
detected; this is particularly relevant for signature schemes where our generic attack
uncovered the necessity of a self-destruct capability. Second, the polynomial-time
detection test in DFP is performed directly by the user since it requires knowledge
of the secret key. This is problematic in practice since often the user’s machine
is completely compromised; instead, in our framework, a cryptographic RF for a
signature scheme relies only on public information and could easily be located on a
(untrusted) external proxy.

Tampering attacks. A related line of research analyzes the security of cryp-
tosystems against tampering attacks. Most of these works are restricted to the
simpler setting of memory tampering (sometimes known as related-key security),
where only the secret key of a targeted cryptoscheme is subject to modification.
By now we know several concrete primitives that remain secure against different
classes of memory-tampering attacks, including pseudorandom functions and per-
mutations [BK03,Luc04,BC10,AFPW11,BCM11], pseudorandom generators and
hard-core bits [GL10], hash functions [GOR11], public-key encryption [AHI11,Wee12],
identification and digital signature schemes [KKS11,DFMV13]. Elegant generic
compilers are also available, relying on so-called tamper-resilient encodings and non-
malleable codes (see, among others, [GLM+04,DPW10,LL12,FMNV14,FMVW14,
ADL14,JW15,DLSZ15,AGM+15,FMNV15,DFMV15]).

The setting of randomness tampering, where the random coins of a cryptographic
algorithm are subject to tampering, has also been considered. For instance Austrin
et al. [ACM+14] consider so-called p-tampering attacks, that can efficiently tamper
with each bit of the random tape with probability p. In this setting they show
that some cryptographic tasks (including commitment schemes and zero-knowledge
protocols) are impossible to achieve, while other tasks (in particular signature and
identification schemes) can be securely realized.

Yet another related setting is that of tampering attacks against gates and wires
in the computation of a cryptographic circuit, and the design of tamper-proof circuit
compilers [IPSW06,FPV11,DK12,KT13,DK14,GIP+14].

Hardware Trojans. Prevention of hardware Trojans in integrated circuits (ICs)
is a common practice, that might take place during the design, manufacturing, and
post-manufacturing stage [Pot10,LJM11].

However, since it is not always possible to efficiently prevent Trojans insertion,
Trojans detection has also been vastly explored [BR15]; once a Trojan is detected,
the circuit can be disposed and not used. Common methodologies used to perform
Trojans detection vary from invasive ones (that destroy the IC to examine it inside),
to non-invasive ones (where the circuit is executed and compared against a trusted
copy of the circuit or against some expected output values). Trojan detection is

11On a high level, one can interpret the polynomial-time test as playing the role of the reverse
firewall.
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typically a very expensive and unreliable process, therefore the best practice is
usually not to rely on any kind of testing to protect against Trojans.

Explicit countermeasures against Trojans also exist, where the objective is to
guarantee the functionality or security of the circuit even in the presence of some
unknown Trojan. For instance, the so-called “data guards” are designed to prevent
a Trojan from being activated and/or to access sensitive data [WS11]. Another
approach is the duplication of logic elements and the division of the sensitive data
to independent parts of the circuit [MWPB09,WS11].

To the best of our knowledge, our work is the first introducing a formal model
for assessing security of ICs in the presence of arbitrary hardware Trojans. The only
exception is [SB15] that considered an even stronger definition than ours (where
the output of the produced circuit must always be the same as that of the original
circuit), but could only achieve security for very limited classes of Trojans (i.e., the
adversary is allowed to “corrupt” only a small fraction of the gates in each layer of
the IC, and a small fraction of the wires connecting different layers).

Very recently, Wahby et al. [WHG+16] also explored the idea of using VC to
address the issue of hardware Trojans in fabless circuit manufacturing. That paper,
however, greatly differ in scope and techniques from this, and can be regarded as
complementary as explained below.

First, our goal is to make sure the secret memory of the rebuilt circuit cannot
be leaked to an outsider (even in the presence of arbitrary hardware Trojans),
whereas [WHG+16] aims at the incomparable goal of ensuring correctness of the
computation (which makes sense also for non-cryptographic functionalities); note
that, as we prove, correctness implies security in our sense using self-destruct (up to
logarithmic leakage on the memory). Second, our main focus is on precise definitions
and proofs in the style of provable security (characterizing which properties are
needed for the VC scheme in order for our approach to go through), while [WHG+16]
addresses the orthogonal question of how to implement the idea of using VC for the
problem at hand in practice (providing a concrete ASIC implementation based on an
optimized existing VC scheme, and measuring its performances in terms of energy
consumption, circuit area, and throughput). Lastly, we also provide a solution to
the problem based on MPC.

In [DFS16] the authors show how to protect against hardware Trojans using
testing-based mechanisms. Their work is based on two existing techniques for
Trojan detection, called “input scrambling” and “split manufacturing”, for which the
authors provide formal models and they use them to construct a compiler satisfying a
quantitative notion of security: They present a generic compiler that transforms any
circuit into another one that satisfies certain guarantees with respect to the number
of correct executions. The trusted verification mechanism of [DFS16] is simpler than
the trusted components employed by our constructions, still our approach provides
stronger security guarantees against broader classes of attackers, that are allowed to
interact with the circuit for an arbitrary (polynomially many) number of executions.

Tamper-proof circuits. Our main security definition for circuits outsourcing
shares similarities with analogous definitions in the context of protecting circuit im-
plementations against tampering attacks. This line of research received considerable
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attention in the past few years [IPSW06,FPV11,DK12,KT13,DK14].
The main difference between this setting and the one considered in this thesis

is that tamper-proof circuit compilers are typically used to protect against fault
injection [Ott06] and tampering attacks at run-time; such attacks are usually carried
out in an adaptive manner, depending on the outcome of previous attempts. Out-
sourcing compilers, instead, only protect against (non-adaptive) tampering taking
place during the circuit fabrication process. Importantly, the latter restriction allows
to obtain security against arbitrary modifications, whereas in circuit tampering
one has to consider very restricted attacks (e.g., wire tampering [IPSW06] or gate
tampering [KT13]).

1.4 Roadmap
In Chapter 2 we introduce the notation used in this thesis and some basic crypto-
graphic concepts and definitions needed for the subsequent chapters.

Next, in Chapter 3 we start the discussion on the uses of backdoors in cryptog-
raphy for good and legitimate purposes; in Section 3.1 we introduce a new definition
of enhanced collision resistance for chameleon hashes, in Section 3.2 we detail our
transformation from a standard collision resistant CH to an enhanced collision
resistant CH, presenting the proofs and constructions in the standard model and
in the random oracle model. In Section 3.3 we give an overview of the blockchain
technology, and discuss the motivations of the chameleon blockchain application
(that is powered by an enhanced collision-resistant CH function) that we introduce
later in Section 3.3.4.

In Chapter 4 we start in Section 4.2 by introducing the definitions of subversion
attacks and undetectability on signature schemes. In Section 4.3 we present two
subversion attacks against signature schemes; the first is an adaption of the attack
from Bellare et al. to signatures that is successful against signature schemes with at
least 7-bits of randomness. The second is a novel attack against coin-extractable
schemes, with even a single bit of randmoness. Later, in Section 4.4 we extend our
definitions and attacks to the multi-user setting, and we show the relations among
the undetectability definition.

In Chapter 5 we start introducing in Section 5.1 the security definitions for
subversion-resilient signature schemes, and we show that unique signature schemes
satisfy this definition. In Section 5.1.6 we present the construction of a unique
signature scheme with a tight security reduction to the quadratic residuosity problem.
Later, in Section 5.1.4 we show how to construct subversion-resilient identification
schemes from subversion-resilient signatures. Closing on the subversion-resilient
signatures topic, in Section 5.2 we provide a way how to achieve the ambitious goal
of protecting signature schemes against arbitrary subversion attacks, relying on a
cryptographic reverse firewall. In Section 5.3.1 we introduce the problem of secure
cryptographic circuit outsourcing, giving motivations and formal definitions. Later
on, in Section 5.3.2 and Section 5.3.3 we detail our two outsourcing circuit compilers,
one based on verifiable computation (VC), and the other based on client-server
secure multiparty computation (MPC). The conclusion remarks in Chapter 6 discuss
the impact of this thesis and future works on the topic.
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Preliminaries

2.1 Notation

For a string x, we denote its length by |x|; if X is a set, |X | represents the number
of elements in X . When x is chosen randomly in X , we write x←$ X . When A is
an algorithm, we write y ← A(x) to denote a run of A on input x and output y; if A
is randomized, then y is a random variable and A(x; r) denotes a run of A on input
x and randomness r. An algorithm A is probabilistic polynomial-time (PPT) if A is
randomized and for any input x, r ∈ {0, 1}∗ the computation of A(x; r) terminates
in at most poly(|x|) steps.

We denote with κ ∈ N the security parameter. A function ν : N→ R is negligible
in the security parameter (or simply negligible) if it vanishes faster than the inverse
of any polynomial in κ, i.e. ν(κ) = κ−ω(1).

The statistical distance between two random variables A and B defined over the
same domain D is defined as ∆ (A; B) = 1

2
∑
x∈D |P [A = x]− P [B = x]|.

We rely on the following lemma (which follows directly from the definition of
statistical distance):

Lemma 1. Let A and B be a pair of random variables, and E be an event defined
over the probability space of A and B. Then,

∆ (A; B) ≤ ∆ (A; B|¬E) + P [E].

For two ensembles Z := {Zκ}κ∈N and Z′ := {Z ′κ}κ∈N, we write Z ≡ Z′ to
denote that the two ensembles are identically distributed. We also write Z ≈c Z′ to
denote that the ensembles are computationally indistinguishable, i.e. for all PPT
distinguishers D there exists a negligible function ν : N→ [0, 1] such that

∆D(Z; Z′) :=
∣∣P [D(z) = 1 : z←$ Z]− P [D(z) = 1] : z←$ Z′

∣∣ ≤ ν(κ).
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Definition 1 (Jacobi Symbol [Sho06]). Let a,N be integers, where N is positive
and odd, so that N = q1 · · · qk, where qi are odd primes, not necessarily distinct.
Then the jacobi symbol JN (a) is defined as JN (a) = (a|qi) · (a|qk), where (a|qi) is 1
if a is a quadratic residue modulo qi and −1 otherwise.

We denote with J+
N the values x ∈ ZN such that JN (x) = 1. The following

lemma is needed for describing the signature scheme of Section 5.1.6.

Lemma 2. Let N = pq s.t. p ≡ q ≡ 3 mod 4. We choose y ∈ Z∗N to be a
quadratic residue. The equation y ≡ x2 mod N takes four distinct values, namely
{x0,−x0, x1,−x1} where JN (x0) = JN (−x0), JN (x1) = JN (−x1) and JN (x0) =
−JN (x1).

Proof. When p ≡ q ≡ 3 mod 4 then Jp(−1) = −1, and Jq(−1) = −1. Taken
modulo N , we get JN (−1) = 1. For i ∈ {0, 1}, it is easy to see that JN (−xi) =
JN (−1) · JN (xi) = 1 · JN (xi).

2.2 Public-Key Cryptography

In this section we introduce some basic aspects and definitions of public-key cryp-
tography.

2.2.1 Public-Key Encryption

A Public-Key Encryption (PKE) scheme is a tuple of efficient algorithms PKE =
(KGen,Enc,Dec) defined as follows. (i) The probabilistic algorithm KGen takes
as input the security parameter κ ∈ N, and outputs a public/secret key pair
(PK ,SK). (ii) The probabilistic algorithm Enc takes as input the public key PK ,
a message m ∈ M, and implicit randomness ρ ∈ Rpke, and outputs a ciphertext
c = Enc(PK ,m; ρ). the set of all ciphertexts is denoted by C. (iii) The deterministic
algorithm Dec takes as input the secret key SK and a ciphertext c ∈ C and outputs
m = Dec(SK , c) which is either equal to some message m ∈M or to an error symbol
⊥.

Correctness. A PKE scheme meets the correctness property if the decryption of
a ciphertext encrypting a given plaintext yields the plaintext.

Definition 2 (Correctness for PKE). We say that PKE satisfies correctness if for
all (PK ,SK )←$ KGen(1κ) there exists a negligible function ν : N→ [0, 1] such that
P[Dec(SK ,Enc(PK ,m)) = m] ≥ 1− ν(κ) (where the randomness is taken over the
internal coin tosses of algorithm Enc).

Semantic security. The standard security notion for PKE schemes goes under the
name of semantic security, and informally states that no efficient adversary given the
public key can distinguish the encryption of two (possibly known) messages [GM84].
We note that the notions of semantic security and security against chosen-plaintext
attacks (CPA), presented below, are equivalent.
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Definition 3 (CPA security). Let PKE = (KGen,Enc,Dec) be a PKE scheme. We
say that PKE is CPA-secure if for all PPT adversaries A the following quantity is
negligible:

P
[
b′ = b : b′←$ A(PK , c); c←$ Enc(PK ,mb); b←$ {0, 1}

(m0,m1)←$ A(PK ); (PK ,SK )←$ KGen(1κ)

]
.

2.2.2 Signature Schemes

A signature scheme is a triple of algorithms SS = (KGen,Sign,Vrfy) specified as
follows: (i) KGen takes as input the security parameter κ and outputs a verifica-
tion/signing key pair (VK ,SK) ∈ VK × SK, where VK := VKκ and SK := SKκ
denote the sets of all verification and secret keys produced by KGen(1κ); (ii) Sign
takes as input the signing key SK ∈ SK, a message m ∈ M and random coins
r ∈ R, and outputs a signature σ ∈ Σ; (iii) Vrfy takes as input the verification key
VK ∈ VK and a pair (m,σ), and outputs a decision bit that equals 1 iff σ is a valid
signature for message m under key VK .

Informally, correctness of a signature scheme says that verifying honestly gener-
ated signatures always works (with overwhelming probability over the randomness
of all involved algorithms).

Definition 4 (Correctness for Signatures). Let SS = (KGen, Sign,Vrfy) be a signa-
ture scheme. We say that SS satisfies νc-correctness if for all m ∈M

P [Vrfy(VK , (m,Sign(SK ,m))) = 1 : (VK ,SK )← KGen(1κ)] ≥ 1− νc,

where the probability is taken over the randomness of KGen, Sign, and Vrfy.

The standard notion of security for a signature scheme demands that no PPT
adversary given access to a signing oracle returning signatures for arbitrary messages,
can forge a signature on a “fresh” message (not asked to the signing oracle).

Definition 5 (Existential Unforgeability). Let SS = (KGen,Sign,Vrfy) be a sig-
nature scheme. We say that SS is (t, q, ε)-existentially unforgeable under chosen-
message attacks ((t, q, ε)-EUF-CMA in short) if for all PPT adversaries A running
in time t it holds:

P
[
Vrfy(VK , (m∗, σ∗)) = 1 ∧m∗ 6∈ Q : (VK ,SK )← KGen(1κ);

(m∗, σ∗)← ASign(SK ,·)(VK )

]
≤ ε,

where Q = {m1, . . . ,mq} denotes the set of queries to the signing oracle. When-
ever ε(κ) = ν(κ) and q = poly(κ), we simply say that SS is EUF-CMA.

Unique signatures. For our results in Section 5.1 we rely on so-called unique
signatures, that we define next. Informally a signature scheme is unique if for
any message there is a single signature that verifies w.r.t. an honestly generated
verification key.
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Definition 6 (Uniqueness). Let SS be a signature scheme. We say that SS satisfies
νu-uniqueness if ∀m ∈M and ∀σ1, σ2 s.t. σ1 6= σ2

P [Vrfy(VK , (m,σ1)) = Vrfy(VK , (m,σ2)) = 1 : (VK ,SK )← KGen(1κ)] ≤ νu,

where the probability is taken over the randomness of the verification and key
generation algorithms.

Full Domain Hash signatures with trapdoor permutations, for instance RSA-
FDH [BR96], are unique. Sometimes unique signatures are also known under the
name of verifiable unpredictable functions (VUFs).1 Known constructions of VUFs
exist based on strong RSA [MRV99], and on several variants of the Diffie-Hellman
assumption in bilinear groups [Lys02,Dod03,DY05,ACF14,Jag15].

It is easy to see that a unique signature must be deterministic; however the
converse is not true (i.e., a signature scheme can be deterministic without satis-
fying the uniqueness condition). One such example is the Katz-Wang signature
scheme [KW03].

2.3 Pseudorandom Functions

Let F : {0, 1}κ ×X → Y be an efficient keyed function, where X and Y denote the
domain and the range of F . Denote by F the set of all functions mapping X into Y .

Definition 7 (Pseudorandom function). A function F : {0, 1}κ × X → Y is a
(t, q, ε)-secure pseudorandom function (PRF), if for all adversaries D running in
time at most t we have∣∣∣∣∣ P

s←$ {0,1}κ

[
DFs(·)(1κ) = 1

]
− P
f ←$ F

[
Df(·)(1κ) = 1

]∣∣∣∣∣ ≤ ε,
where D asks at most q queries to its oracle.

We note that the existence of PRFs depends on the existence of one-way functions.
We point the reader to [Gol01] for more details.

2.4 Trapdoor Permutations

A Trapdoor Permutation (TDP) is a family of polynomial-time algorithms T DP =
(Gen,Eval, Invert) defined as follows. (i) On input the security parameter κ the
probabilistic algorithm Gen outputs a public description of a permutation α, an
efficiently sampleable domain Xα and a trapdoor tk. (ii) The deterministic algorithm
Eval on input α and x ∈ Xα, outputs y ∈ Xα. (iii) The deterministic algorithm
Invert on input tk and y ∈ Xα, outputs x ∈ Xα.

1Strictly speaking, VUFs satisfy a stronger requirement—namely the uniqueness property holds
even for maliciously generated verification keys; the weak variant above is sufficient for the results
of this thesis.
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Definition 8 (Correctness for TDP). Let T DP = (Gen,Eval, Invert) be a trapdoor
permutation. We say that T DP satisfies correctness if for all (α,Xα, tk)← Gen(1κ)
and for all x ∈ Xα there exists a negligible function ν : N → [0, 1] such that
P[Invert(tk,Eval(α, x)) = x] ≥ 1− ν(κ).

Definition 9 (One-way trapdoor permutation). Let T DP = (Gen,Eval, Invert) be a
trapdoor permutation. We say that T DP is one-way if for all PPT adversaries D
there exists a negligible function ν : N→ [0, 1] such that

P [(α, tk)← Gen(1κ);x← D(α, y) : y ← Eval(α, x)] ≤ ν(κ).

2.5 Non-Interactive Zero-Knowledge

LetR : {0, 1}∗×{0, 1}∗ → {0, 1} be an NP relation on pairs (x, y), with corresponding
language L := {y : ∃x s.t. R(x, y) = 1}. A non-interactive argument for R allows a
prover P to convince a verifier V that a common element y belongs to the language
L (where both P and V are modeled as PPT algorithms); the prover P is facilitated
by knowing a witness x for y ∈ L. A formal definition follows.

Definition 10 (Non-interactive argument). A non-interactive argument for an NP
relation R is a tuple of efficient algorithms NIA = (Setup,P,V) specified as follows.

• ω←$ Setup(1κ): The probabilistic algorithm Setup takes as input the security
parameter κ ∈ N, and outputs the public common reference string (CRS) ω.

• π←$ P(ω, x, y): The probabilistic algorithm P takes as input the CRS ω and a
pair x, y such that R(x, y) = 1, and returns a proof π for membership of y ∈ L.

• d = V(ω, y, π): The deterministic algorithm V takes as input the CRS ω and a
pair (y, π), and returns a decision bit d ∈ {0, 1}.

Non-interactive arguments typically satisfy three properties known as complete-
ness, zero-knowledge, and soundness, which we review below. We remark that the
CRS is necessary for achieving non-interactive zero-knowledge (see, e.g., [Gol01]).

Completeness. The completeness property states that a honest prover (holding
a valid witness x) should always be able to convince the verifier that y ∈ L.

Definition 11 (Completeness for arguments). Let NIA = (Setup,P,V) be a non-
interactive argument for an NP relation R. We say that NIA satisfies completeness
if for all pairs (x, y) such that R(x, y) = 1, the following probability is overwhelming:

P [V(ω, y, π) = 1 : π←$ P(ω, x, y);ω←$ Setup(1κ)].

Zero-knowledge. The zero-knowledge property informally says that a possibly
malicious verifier cannot acquire any knowledge on the witness that it couldn’t
acquire by itself. Non-interactive zero-knowledge (NIZK) was first formalized by
Blum, Feldman and Micali [BFM88].
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Definition 12 (Zero-knowledge). Let NIA = (Setup,P,V) be a non-interactive
argument for an NP relation R. We say that NIA satisfies zero-knowledge if there
exists a PPT simulator S := (S1,S2) such that for all adversaries A the following
quantity is negligible:∣∣∣∣∣P

[
b = b′ : b′←$ A(ω, τ, πb);π0←$ P(ω, x, y);π1←$ S2(τ, y)

b←$ {0, 1}; (x, y)←$ A(ω, τ); (ω, τ)←$ S1(1κ)

]
− 1

2

∣∣∣∣∣ .
Simulation extractability. The soundness property states that it is hard for a
malicious prover to generate an accepting proof π for an element y 6∈ L. Below, we
review a strictly stronger formulation of the soundness requirement which is known
as simulation extractability, and informally says that soundness still holds even if
the malicious prover can access simulated proofs for true statements.

This leads to the concept of true-simulation extractable (tSE) NIZK, as defined
by Dodis, Haralambiev, Lòpez-Alt, and Wichs [DHLW10].

Definition 13 (True-simulation extractability). Let NIA = (Setup,P,V) be a
NIZK for an NP relation R, with zero-knowledge simulator S = (S1,S2), and let f
be an efficiently computable function. We say that NIA satisfies true-simulation
f-extractability (f-tSE for short) if there exists a PPT extractor Ext such that for
all PPT adversaries A the following quantity is negligible:

P

 y∗ 6∈ Q ∧ (V(ω, y∗, π∗) = 1)
∧∀x∗ s.t. f(x∗) = z∗(R(x∗, y∗) = 0) :

z∗←$ Ext(τ, y∗, π∗)
(y∗, π∗)←$ AOτ (·,·)(ω)

(ω, τ)←$ S1(1κ)

,
where oracle Oτ takes as input pairs (xi, yi) and returns the same as S2(τ, yi) as
long as R(xi, yi) = 1 (and ⊥ otherwise), and Q is the set of all values yi asked to
oracle Oτ .

Note that in the above definition the adversary is only allowed to see simulated
proof for true statements. A stronger variant (which is not needed in this thesis)
requires that simulation extractability holds even if the adversary is allowed to see
simulated proofs for possibly false statements. The latter property is also known
under the name of robust NIZK [SCO+01,Gro06].

As noted in [DHLW10] tSE NIZK are significantly more efficient to construct,
indeed they can be generically obtained combining any standard NIZK (such as the
powerful Groth-Sahai NIZK [GS08]) with a CCA-secure PKE scheme.

2.6 Circuits

A (Boolean) circuit Γ = (V,E) is a directed acyclic graph. The vertices V are logical
gates, and the edges E are wires connecting the gates. For the case of deterministic
circuits, the gates can be of type AND, XOR and copy, where AND (resp. XOR) have
fan-in two and fan-out one, and output the AND (resp. XOR) operation on the
input bits; a copy gate, denoted copy, simply forwards the input bit into two output
wires.
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The depth of a circuit is defined as the longest path from an input to an output;
the size of a circuit is defined as its total number of gates. Sometimes we explicitly
write 〈Γ〉 for the description of the circuit Γ.

A circuit is clocked if it evolves in clock cycles (or rounds). The input and output
values of the circuit Γ in clock cycle i are denoted by Xi and Yi, respectively. A
circuit is probabilistic if it uses internal randomness as part of its logic. We call such
probabilistic logic randomness gates and denote them with $. In each clock cycle
$ outputs a fresh random bit. Additionally, a circuit may contain memory gates.
Memory gates, which have a single incoming edge and any number of outgoing edges,
maintain state: at any clock cycle, a memory gate sends its current state down its
outgoing edges and updates it according to the value of its incoming edge. Any cycle
in the circuit graph must contain at least one memory gate. The state of all memory
gates at clock cycle i is denoted by Mi, with M1 denoting the initial state. When a
circuit is run in state Mi on input Xi, the circuit will output Yi and the memory
gates will be in a new state Mi+1. We will denote this by (Yi,Mi+1)← Γ[Mi](Xi).
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The Good

In this chapter we discuss the beneficial use of backdoors in cryptographic primitives.
We start by formally defining collision resistance of public/secret coin chameleon
hash functions in Section 3.1. In Section 3.2 we introduce the main ingredients
required by our generic chameleon hash transformation, which is described and
analyzed in full details later in Section 3.2.

Finally, later in Section 3.2, we instantiate our transformation under standard
complexity assumptions, both in the standard and in the random oracle model.

3.1 Chameleon Hash Functions

The concept of chameleon hashing was put forward by Krawczyk and Rabin [KR00],
building on the notion of chameleon commitments [BCC88]. Informally, a chameleon
hash is a cryptographic hash function that contains a trapdoor: Without the trapdoor
it should be hard to find collisions, but knowledge of the trapdoor information allows
to efficiently generate collisions for the hash function.

3.1.1 Secret-coin Hashing

We start by introducing a generalization of the standard concept of chameleon
hashing to make it more relevant in practice. Our generalization is referred to as
“secret-coin” and includes standard chameleon hashes as a special case (now referred
to as “public-coin”).

Definition 14 (Secret-coin chameleon hash). A secret-coin chameleon hash function
is a tuple of efficient algorithms CH = (HGen,Hash,HVer,HCol) specified as follows.

• (hk, tk)←$ HGen(1κ): The probabilistic key generation algorithm HGen takes
as input the security parameter κ ∈ N, and outputs a public hash key hk and a
secret trapdoor key tk.
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• (h, ξ)←$ Hash(hk,m): The probabilistic hashing algorithm Hash takes as input
the hash key hk, a message m ∈M, and implicit random coins r ∈ Rhash, and
outputs a pair (h, ξ) that consists of the hash value h and a check string ξ.

• d = HVer(hk,m, (h, ξ)): The deterministic verification algorithm HVer takes
as input a message m ∈ M, a candidate hash value h, and a check string ξ,
and returns a bit d that equals 1 if (h, ξ) is a valid hash/check pair for the
message m (otherwise d equals 0).

• π′←$ HCol(tk, (h,m, ξ),m′): The probabilistic collision finding algorithm HCol
takes as input the trapdoor key tk, a valid tuple (h,m, ξ), and a new message
m′ ∈ M, and returns a new check string ξ′ such that HVer(hk,m, (h, ξ)) =
HVer(hk,m′, (h, ξ′)) = 1. If (h, ξ) is not a valid hash/check pair for message
m then the algorithm returns ⊥.

Correctness informally says that a pair (h, ξ), computed by running the hashing
algorithm, verifies with overwhelming probability.

Definition 15 (Correctness for chameleon hashing). Let CH = (HGen,Hash,HVer,
HCol) be a secret-coin chameleon hash function with message space M. We say
that CH satisfies correctness if for all m ∈ M there exists a negligible function
ν : N→ [0, 1] such that

P [HVer(hk,m, (h, ξ)) = 1 : (h, ξ)←$ Hash(hk,m); (hk, tk)←$ HGen(1κ)] ≥ 1− ν(κ).

3.1.2 Public-coin Hashing

In the definition above the hashing algorithm is randomized, and, upon input some
message m, it produces a hash value h together with a check value ξ that helps
verifying the correct computation of the hash given the public hash key. The random
coins of the hashing algorithm are, however, secret. A particular case is the one
where the check value ξ consists of the random coins r used to generate h, as the
hash computation becomes completely deterministic once m and r are fixed; we call
such a chameleon hash function public-coin and we define it formally below. Since
the verification algorithm simply re-runs the hashing algorithm, we typically drop
the verification algorithm from CH in the case of public-coin chameleon hashing.

Definition 16 (Public-coin chameleon hash). A public-coin chameleon hash is
a collection of efficient algorithms CH = (HGen,Hash,HVer,HCol) specified as in
Definition 14, with the following differences:

• The hashing algorithm Hash, upon input the hash key hk and message m ∈M,
returns a pair (h, r), where r ∈ Rhash denote the implicit random coins used to
generate the hash value.

• The verification algorithm HVer, given as input the hash key hk, message m,
and a pair (h, r), returns 1 if and only if Hash(hk,m; r) = h.
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Collision resistance. The main security property satisfied by a secret/public-coin
chameleon hash function is that of collision resistance: No PPT algorithm, given
the public hash key hk, can find two pairs (m, ξ) and (m′, ξ′) that are valid under
hk and such that m 6= m′, with all but a negligible probability. Furthermore, for
the application that we devise in Section 3.3, it is important that the above still
holds even after seeing arbitrary collisions generated using the trapdoor key tk
corresponding to hk.

3.1.3 Enhanced Collision Resistance

A collision for a secret-coin or public-coin hash function is a tuple h, (m, ξ), (m′, ξ′)
such that m 6= m′, and (h, ξ) and (h, ξ′) are valid hash/check pairs for m and m′
(respectively). For a chameleon hash function we require the following security
property, which intuitively says that it should be hard to find collisions for the hash
function even given access to the collision finding algorithm (returning collisions for
adaptively chosen hash values). We call such a property enhanced collision resistance,
and we define it formally below.

Definition 17 (Enhanced collision resistance). Let CH = (HGen,Hash,HVer,HCol)
be a (secret-coin or public-coin) chameleon hash function. We say that CH satisfies
enhanced collision resistance if for all PPT breakers B, the following quantity is
negligible in the security parameter:

P

 (HVer(hk,m, (h, ξ)) =
HVer(hk,m′, (h, ξ′)) = 1)
∧(m 6= m′) ∧ (h /∈ Q)

: (h, (m, ξ), (m′, ξ′))←$ BOhk,tk(·)(hk)
(hk, tk)←$ HGen(1κ)

,
where the set Q is the set of all hash values queried by B to its oracle, and oracle
Ohk,tk is defined as follows: Upon input a collision query of the form ((h,m, ξ),m′)
run HVer(hk,m, (h, ξ)) := d; if d = 1 return the output of HCol(tk, (h,m, ξ),m′),
otherwise return ⊥. In case B is not allowed to query oracle Ohk,tk, we simply say
that CH is collision-resistant.

Discussion. Any standard chameleon hash (e.g., the ones considered in [Dam87,
KR00,ST01,BR14]) is easily seen to imply a public-coin collision-resistant chameleon
hash as specified in Definition 16. Let us stress, however, that secret-coin chameleon
hash functions can be used for the very same applications as public-coin ones, in
particular for constructing chameleon signatures [KR00] and online/offline signa-
tures [EGM96,ST01,BCR+13]; the only difference is that one needs to store the
check value ξ (instead of the randomness r) in order to verify a hash value, and the
hash verification does not in general consist of re-computing the hash.

Unfortunately, as observed by Ateniese and de Medeiros [AdM04], collision
resistance is not sufficient for most of the applications of chameleon hash. The
reason is that, while the hash function is indeed collision-resistant, any party seeing
a collision for the hash function would be able to find other collisions or even recover
the secret trapdoor information. This “key exposure” problem makes chameleon
hashes not applicable in many contexts. Enhanced collision resistance, as defined
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above, precisely addresses such issue as it requires that it should be hard to find
collisions even after seeing (polynomially many) collisions.

Yet another flavor of chameleon hashing consists of so-called “labeled” hash
functions, where the hash algorithm takes as input an additional value λ called
the label. Some of these constructions, e.g. the ones in [AdM04,CZK04,CTZD10,
CZS+10], do not suffer from the key exposure problem, as they satisfy the property
that it should be unfeasible to find collisions for a “fresh” label λ∗, even given access
to an oracle that outputs collisions for arbitrary other labels λ 6= λ∗. 1 However,
labeled chameleon hash functions are not useful for constructing online/offline
signatures and for the type of application developed in Section 3.3.

3.2 Chameleon Hash Transformation
To the best of our knowledge, the only construction of a chameleon hash function
satisfying enhanced collision resistance is due to [AdM04]; the construction is ad-hoc
and relies on the Nyberg-Rueppel signature scheme [NR94] (whose security can be
shown under the Discrete Logarithm assumption in the generic group model [Sho97]).

Previously to our work it was unknown whether enhanced collision resistance can
be achieved in a non ad-hoc fashion, based on different complexity assumptions in
the standard model. We answer this open question in the affirmative, by exhibiting
a generic transformation from any public-coin collision-resistant chameleon hash to
a secret-coin chameleon hash satisfying the stronger enhanced collision resistance
requirement. The transformation is based on a CPA-secure PKE scheme (cf. Sec-
tion 2.2.1) and on a tSE NIZK [DHLW10] (cf. Section 2.5), and is presented in detail
below.

3.2.1 The Generic Transformation

Let CH = (HGen,Hash,HCol) be a public-coin chameleon hash function (with mes-
sage space Mhash and randomness space Rhash), let PKE = (KGen,Enc,Dec) be
a PKE scheme (with message space Rhash and randomness space Rpke), and let
NIA = (Setup,P,V) be a non-interactive argument system for the language

LCH =
{

(PK , c, hk, h,m) : ∃(r, ρ) s.t. h = Hash(hk,m; r)∧
c = Enc(PK , r; ρ)

}
(3.1)

Consider the secret-coin chameleon hash function CH∗ = (HGen∗,Hash∗,HVer∗,
HCol∗) specified as follows.

• HGen∗(1κ): Run (hk, tk)←$ HGen(1κ), sample (PK ,SK)←$ KGen(1κ), and
ω←$ Setup(1κ). Return the pair (hk∗, tk∗), such that hk∗ := (hk, ω,PK ), and
tk∗ := (tk,SK ).

• Hash∗(hk∗,m): Sample a random value r ∈ Rhash and run Hash(hk,m; r) := h.
Sample a random value ρ ∈ Rpke and run c := Enc(PK , r; ρ). Compute the

1Identity-based chameleon hash functions [AdM04,CZT+11,CZS+14] also partially address the
key exposure problem, but they require a trusted party and thus only offer a partial solution.
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Game G0-3, G1-3 :
(PK ,SK )←$ KGen(1κ)
ω←$ Setup(1κ); (ω, τ)←$ S1(1κ)
(hk, tk)←$ HGen(1κ)
hk∗ := (hk,PK , ω)
tk∗ := (tk,SK ); tk∗ = (tk,SK , τ)
(h,m, ξ,m′, ξ′)←$ B∗Ohk∗,tk∗ (·)(hk∗)

Oracle Ohk∗,tk∗((h,m, ξ),m′):
//G0-3, G1-3 , G2-3 , G3
Parse ξ := (c, π); y = (PK , c, hk, h,m)
If V(ω, y, π) = 0

Return ⊥
r := Dec(SK , c); r←$ Ext(τ, y, π)
r′←$ HCol(tk, (h,m, r),m′)
ρ′←$Rpke
c′ = Enc(PK , r′; ρ′); c′ = Enc(PK , 0; ρ)
y′ := (PK , c′, hk, h,m′)
x′ := (r′, ρ′)
π′←$ P(ω, x′, y′); π′←$ S2(τ, y′)
Return ξ′ := (c′, π′).

Figure 3.1. Games in the proof of Theorem 1.

proof π←$ P(ω, x, y), where x := (r, ρ) and y := (PK , c, hk, h,m), and return
(h, ξ) such that ξ := (c, π).

• HVer∗(hk∗,m, (h, ξ)): Parse ξ = (c, π) and return the output of V(ω, y, π)
where y = (PK , c, hk, h,m).

• HCol∗(tk∗, (h,m, ξ),m′): First run HVer(hk∗,m, (h, ξ)) := d; if d = 0 then
output ⊥, otherwise, decrypt the randomness r := Dec(SK , c), compute a
collision r′←$ HCol(tk, (h,m, r),m′), sample a random ρ′ ∈ Rpke and encrypt
the new randomness c′ := Enc(PK , r′; ρ′). Compute the proof π′←$ P(ω, x′, y′),
such that x′ = (r′, ρ′) and y′ := (PK , c′, hk, h,m′), and return ξ′ := (c′, π′).

The correctness property follows readily from the correctness of the underlying
building blocks. As for security, we show the following result.

Theorem 1. Assume that CH is a public-coin collision-resistant chameleon hash
function, that PKE is a CPA-secure PKE scheme, and that NIA is an f -tSE-NIZK
for the language of Eq. (3.1), where for any witness (r, ρ) we define f(r, ρ) = r.
Then the above defined secret-coin chameleon hash function CH∗ satisfies enhanced
collision resistance.

Proof. The proof is by game hopping. We define a series of games, starting with
the original game for enhanced collision resistance of our construction CH∗. Next,
we argue that each pair of adjacent games is computationally indistinguishable and
additionally that any PPT breaker has only a negligible advantage in the last game;
this yields the theorem.

Below we give a concise description of the games, focusing only on the incremental
changes between each game and the previous one; a full description of the games
appears in Fig. 3.1.

Game G0: This is the original experiment of Definition 17, running with our
secret-coin chameleon hash function CH∗ and a PPT breaker B∗.
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Game G1: We change the way collision queries are answered. In particular, we
compute the proof π′ by running the zero-knowledge simulator S = (S1,S2)
instead of running the real prover P. In order to do so, we first set-up the CRS
by running (ω, τ)←$ S1(1κ) and later generate π′ by running S2(τ, ·).

Game G2: We change the way collision queries are answered. In particular, instead
of recovering the randomness r by decrypting the ciphertext c, we now compute
r by extracting the proof π. In order to do so, we first set-up the CRS by
running (ω, τ)←$ S1(1κ) and later recover r by running Ext(τ, ·, ·).

Game G3: We change the way collision queries are answered. In particular, in-
stead of first equivocating the hash value h yielding some new randomness r′
(corresponding to message m′) and then computing c′ as an encryption of r′,
we simply let c′ be an encryption of zero.

In each game Gi, for i ∈ [0, 3], we define the event Gi = 1 to be the event that B∗
wins in the corresponding game, namely that the tuple (h,m, ξ,m′, ξ′) returned by
B∗ is such that m 6= m′ and both proofs π and π′ contained in ξ and ξ′ are accepting.
Next, we analyze the computational distance between each pair of adjacent games.

Claim 1.1. For all PPT distinguishers D there exists a negligible function ν0,1 :
N→ [0, 1] such that |P [D(G0(κ)) = 1]− P [D(G1(κ)) = 1]| ≤ ν0,1(κ).

Proof of claim. Assume that there exists a PPT distinguisher D and a polynomial
p0,1(·) such that, for infinitely many values of κ ∈ N, we have that D distinguishes
between game G0 and game G1 with probability at least 1/p0,1(κ). Let q ∈ poly(κ)
be the number of queries that D is allowed to ask to its oracle. For an index i ∈ [0, q]
consider the hybrid game Hi that answers the first i queries as in game G0 and all
the subsequent queries as in game G1. Note that H0 ≡ G1 and Hq ≡ G0.

By a standard hybrid argument, we have that there exists an index i ∈ [0, q]
such that D tells apart Hi−1 and Hi with non-negligible probability 1/q · 1/p0,1(κ).
We build a PPT adversary A that (using distinguisher D) breaks the non-interactive
zero-knowledge property of NIA. A formal description of A follows.

Adversary A:

• The challenger runs (ω, τ)←$ S1(1κ) and forwards (ω, τ) to A.
• Run (hk, tk)←$ HGen(1κ), sample (PK ,SK )←$ KGen(1κ), and send

hk∗ := (hk,PK , ω) to D.
• Upon input a collision query of type ((hj ,mj , ξj),m′j) from D,

such that ξj = (cj , πj), first check whether V(ω, (PK , cj , hk, hj ,m),
πj) = 0. In case this happens return ⊥, otherwise: Decrypt
the randomness rj := Dec(SK , cj), find a collision r′j ←$ HCol(tk,
(hj ,mj , rj),m′j), sample ρ′j ←$Rpke, and let c′j = Enc(PK , r′j ; ρ′j).
Hence:
– If j ≤ i−1, compute π′←$ P(ω, (PK , c′j , hk, hjm′j), (r′j , ρ′j)) and

return ξ′j := (c′j , π′j) to D.
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– If j = i, forward ((r′j , ρ′j), (PK , c′j , hk, hj ,m′j)) to the challenger
obtaining a proof π′j ; return ξ′j := (c′j , π′j) to D.

– If j ≥ i+1, compute π′j ←$ S2(τ, (PK , c′j , hk, hj ,m′j)) and return
ξ′ := (c′j , π′j).

• Output whatever D outputs.

For the analysis, note that the only difference between game Hi−1 and game
Hi is on how the i-th query is answered. In particular, in case the hidden bit
b in the definition of non-interactive zero-knowledge equals zero A’s simulation
produces exactly the same distribution as in Hi−1, and otherwise A’s simulation
produces exactly the same distribution as in Hi. Hence, A breaks the NIZK property
with non-negligible advantage 1/q · 1/p0,1(κ), a contradiction. This concludes the
proof.

Claim 1.2. For all PPT distinguishers D there exists a negligible function ν1,2 :
N→ [0, 1] such that |P [D(G1(κ)) = 1]− P [D(G2(κ)) = 1]| ≤ ν1,2(κ).

Proof of claim. Let q ∈ poly(κ) be the number of collision queries that the adversary
is allowed to ask to its oracle, where each query has a type ((hj ,mj , ξj),m′j) for
some ξ′j = (cj , πj). Define the following “bad event” E, in the probability space of
game G1: The event becomes true if there exists an index i ∈ [q] such that the proof
πi is accepting for (PK , ci, hk, hi,mi) ∈ LCH∗ , but running the extractor Ext(τ, ·, ·)
on (yi, πi) yields a value ri such that hi 6= Hash(hk,mi; ri), whereas this does not
happen if ri is computed as in G1.

Notice that G1(κ) and G2(κ) are identically distributed conditioning on E not
happening. Hence, by a standard argument, it suffices to bound the probability
of provoking event E by all PPT adversaries D. Assume that there exists a PPT
distinguisher D and a polynomial p1,2(·) such that, for infinitely many values of
κ ∈ N, we have that D provokes event E with probability at least 1/p1,2(κ).

We build an adversary A that (using distinguisher D) breaks true-simulation
extractability of NIA (for the function f defined in the theorem statement). A
formal description of A follows.

Adversary A:

• The challenger runs (ω, τ)←$ S1(1κ) and forwards ω to A.
• Run (hk, tk)←$ HGen(1κ), sample (PK ,SK )←$ KGen(1κ), and send

hk∗ := (hk,PK , ω) to D.
• Upon input a collision query of type ((hj ,mj , ξj),m′j) from D, such

that ξj = (cj , πj), first check whether V(ω, (PK , cj , hk, hj ,mj), πj)
= 0. In case this happens return ⊥, otherwise: Decrypt the random-
ness rj := Dec(SK , cj), find a collision r′j ←$ HCol(tk, (hj ,mj , rj),
m′j), sample ρ′j ←$Rpke and encrypt c′j := Enc(PK , r′j ; ρ′j). For-
ward (x′j , y′j) to the target oracle, where x′j := (r′j , ρ′j) and y′j :=
(PK , c′j , hk, hj ,m′j), obtaining a simulated proof π′j and forward
ξ′j := (c′j , π′j).
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• After D is done with its queries, sample a random index i←$ [q]
and forward (y∗, π∗) to the challenger, where the values y∗ :=
(PK , ci, hk, hi,mi) and π∗ := πi are taken from D’s i-th query to
the collision oracle.

For the analysis, we note that A’s simulation is perfect as the answer to D’s queries
to the collision oracle are distributed exactly as in G1. Thus, D provokes event E
with probability 1/p1,2(κ) and so the pair (y∗, π∗) violates the f -tSE property of the
non-interactive argument with non-negligible probability 1/q · 1/p1,2(κ). The claim
follows.

Claim 1.3. For all PPT distinguishers D there exists a negligible function ν2,3 :
N→ [0, 1] such that |P [D(G2(κ)) = 1]− P [D(G3(κ)) = 1]| ≤ ν2,3(κ).

Proof of claim. Assume that there exists a PPT distinguisher D and a polynomial
p2,3(·) such that, for infinitely many values of κ ∈ N, we have that D distinguishes
between game G2 and game G3 with probability at least 1/p2,3(κ). Let q ∈ poly(κ)
be the number of queries that D is allowed to ask to its oracle. For an index i ∈ [0, q]
consider the hybrid game Hi that answers the first i queries as in game G2 and all
the subsequent queries as in game G3. Note that H0 ≡ G3 and Hq ≡ G2.

By a standard hybrid argument, we have that there exists an index i ∈ [0, q]
such that D tells apart Hi−1 and Hi with non-negligible probability 1/q · 1/p2,3(κ).
We build a PPT adversary A that (using distinguisher D) breaks CPA security of
PKE . A formal description of A follows.

Adversary A:

• Receive PK from the challenger, where (PK ,SK )←$ KGen(1κ).
• Run (hk, tk)←$ HGen(1κ), (ω, τ)←$ S1(1κ), and send hk∗ := (hk,PK , ω)

to D.
• Upon input a collision query of type ((hj ,mj , ξj),m′j) from D,

such that ξj = (cj , πj), first check whether V(ω, (PK , cj , hk, hj ,m),
πj) = 0. In case this happens return ⊥, otherwise: Extract the
randomness rj := Ext(τ, (PK , cj , hk, hj ,m), πj) and find a collision
r′j ←$ HCol(tk, (hj ,mj , rj),m′j). Hence:
– If j ≤ i − 1, sample a random ρ′j ∈ Rpke, encrypt c′j :=

Enc(PK , r′j ; ρ′j), simulate a proof π′j ←$ S2(τ, (PK , c′j , hk, hj ,m′)),
and return ξ′j := (c′j , π′j) to D.

– If j = i, forward (r′j , 0) for the challenger receiving back a
ciphertext c′j ; simulate a proof π′j ←$ S2(τ, (PK , c′j , hk, hj ,m′)),
and return ξ′j := (c′j , π′j) to D.

– If j ≥ i + 1, sample a random ρ′j ∈ Rpke, encrypt c′j :=
Enc(PK , 0; ρ′j), simulate a proof π′j ←$ S2(τ, (PK , c′j , hk, hj ,m′)),
and return ξ′j := (c′j , π′j) to D.

• Output whatever D outputs.
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For the analysis, note that the only difference between game Hi−1 and game
Hi is on how the i-th collision query is answered. In particular, in case the hidden
bit b in the definition of CPA security equals zero, A’s simulation produces exactly
the same distribution as in Hi−1, and otherwise A’s simulation produces exactly
the same distribution as in Hi. Hence, A breaks CPA security with non-negligible
advantage 1/q · 1/p2,3(κ), a contradiction. This concludes the proof.

Finally, we show that any PPT adversary has a negligible success probability in
game G3, which concludes the proof of the theorem.

Claim 1.4. For all PPT breakers B∗ there exists a negligible function ν3 : N→ [0, 1]
such that P [G3(κ) = 1] ≤ ν3(κ).

Proof of claim. The proof is down to collision resistance of the underlying public-
coin chameleon hash function CH. Namely, assume that there is a PPT breaker
B∗ and a polynomial p3(·) such that, for infinitely many values of κ ∈ N, we have
P [G3(κ) = 1] ≥ 1/p3(κ). We build a PPT breaker B that (using breaker B∗) breaks
collision resistance of CH as follows.

Adversary B:

• Receive hk from the challenger, where (hk, tk)←$ HGen(1κ).

• Run (ω, τ)←$ S1(1κ), (PK ,SK)←$ KGen(1κ), and send hk∗ :=
(hk,PK , ω) to B∗.

• Upon input a collision query of type ((hj ,mj , ξj),m′j) from B∗, such
that ξj = (cj , πj), answer as this would be done in game G3. Note
that this can be done because the way collision queries are treated
in G3 is completely independent on the trapdoor information tk.
In particular, first check whether V(ω, (PK , cj , hk, hj ,m), πj) = 0.
In case this happens return ⊥, otherwise: Extract the random-
ness rj := Ext(τ, (PK , cj , hk, hj ,m), πj), sample a random ρ′j ∈
Rpke, encrypt c′j := Enc(PK , 0; ρ′j), and simulate π′j ←$ S2(τ, (PK ,
c′j , hk, hj ,m′j)); return ξ′j := (c′j , π′j) to B∗.

• Eventually B∗ outputs the tuple (h,m, ξ,m′, ξ′). When this happens,
let r := Dec(SK , r) and r′ := Dec(SK , c′), and output (h,m, r,
m′, r′) to the challenger.

For the analysis, note that B perfectly simulates B∗’s queries to the collision
oracle. It follows that, with probability at least 1/p3(κ), adversary B∗ outputs a
collision for CH∗. This implies that the output of B constitutes a valid collision for
CH, with the same probability, and thus concludes the proof of the claim.
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3.2.2 Concrete Instantiations

We now explain how to instantiate our generic transformation from the previous
section using standard complexity assumptions. We need three main ingredients: (i)
A public-coin chameleon hash function CH = (HGen,Hash,HCol) with randomness
space Rhash; (ii) A CPA-secure PKE scheme PKE1 = (KGen1,Enc1,Dec1) with
message spaceM1

pke := Rhash and randomness space R1
pke; (iii) An f -tSE NIZK for

the language of Eq. (3.1), where the function f : Rhash ×R1
pke → Rhash has a type

f(r, ρ) = r. For the latter component, we rely on the construction due to Dodis et
al. [DHLW10] that allows to obtain an f -tSE NIZK for any efficiently computable
function f and for any language L, based on a standard (non-extractable) NIZK for
that language and a CCA-secure PKE scheme.

Let PKE2 = (KGen2,Enc2,Dec2) be a CCA-secure PKE scheme with message
spaceM2

pke := Rhash. Plugging in the construction from [DHLW10] the check value
ξ in our construction has the form ξ := (c1, c2, π), where π is a standard NIZK
argument for ((PK 1, c1), (hk, h,m), (PK 2, c2)) ∈ LCH, with language LCH being
defined as follows:

LCH =

((PK 1, c1), (hk, h,m), (PK 2, c2)) :

∃(r, ρ1, ρ2) s.t.
h = Hash(hk,m; r),
c1 = Enc1(PK 1, r; ρ1),
c2 = Enc2(PK 2, r; ρ2)

 , (3.2)

and where PK 1 and PK 2 are public keys generated via KGen1 and KGen2 (re-
spectively), and where hk is generated via HGen.

As for the public-coin chameleon hash function, we use the framework of Bellare
and Ristov [BR14] which is based on so-called Sigma-protocols. Below, we first
define the complexity assumptions on which we build, and later detail two concrete
instantiations (the first one in the random oracle model and the second one in the
standard model).

Hardness Assumptions

We review the main complexity assumptions on which our instantiations are based.
In what follows, let G be a group with prime order q and with generator G.

Discrete Logarithm assumption. Let g←$ G and x←$ Zq. We say that the
Discrete Logarithm (DL) assumption holds in G if it is computationally hard to find
x ∈ Zq given y = gx ∈ G.

Decisional Diffie-Hellman assumption. Let g1, g2←$ G and x1, x2, x←$ Zq.
We say that the Decisional Diffie-Hellman (DDH) assumption holds in G if the
following distributions are computationally indistinguishable: (G, g1, g2, g

x1
1 , gx2

2 )
and (G, g1, g2, g

x
1 , g

x
2 ).
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Symmetric External Diffie-Hellman assumption. Let G1, G2, GT be groups
of prime order q and let e : G1×G2 → GT be a non-degenerate, efficiently computable,
bilinear map. The Symmetric External Diffie-Hellman (SXDH) assumption states
that the DDH assumption holds in both G1 and G2. Such an assumption is not
satisfied in case G1 = G2, but it is believed to hold in case there is no efficiently
computable mapping between G1 and G2 [Sco02,BBS04].

K-Linear assumption [Sha07a, HK07]. Let K ≥ 1 be a constant, and let
g1, . . . , gK+1←$ G and x1, . . . , xK ←$ Zq. The K-linear assumption holds in G
if the following distributions are computationally indistinguishable: (G, gx1

1 , . . . ,

gxKK , g
xK+1
K+1 ) and (G, gx1

1 , . . . , gxKK , g

∑K

i=1 xi
K+1 ). Note that for K = 1 we obtain the DDH

assumption, and for K = 2 we obtain the so-called Linear assumption [Sha07a].
In what follows we assume that the K-linear assumption holds in both G1 and

G2, which is the case for symmetric pairings provided that K ≥ 2. For K = 1
we slightly abuse notation, and assume that the SXDH assumption holds instead
(although that requires asymmetric pairings).

Random Oracle Model Instantiation

For concreteness, we focus here on a specific construction relying on the DDH assump-
tion and on the Sigma-protocol due to Schnorr [Sch91]; similar constructions can be
obtained based on the RSA assumption, on Quadratic Residuosity, and on Factoring,
using the Sigma protocols due to Guillou-Quisquater [GQ88], Fiat-Shamir [FS86],
Ong-Schnorr [OS90], Okamoto [Oka92], and Fischlin and Fischlin [FF02].

Public-Coin Hash: Let G be a group with prime order q and with generator g,
where the Discrete Logarithm problem is believed to be hard. 2 Algorithm
HGen picks a random x←$ Zq and defines hk := gx = y and tk = x. In
order to hash a message m ∈ Zq, algorithm Hash(hk,m; r) picks a random
r←$ Zq and returns h := gr · y−m. In order to compute a collision, algorithm
HCol(tk, (h,m, r),m′) returns r′ = r − x · (m − m′) mod q.3 Notice that
Rhash =Mhash := Zq.

CPA PKE: We use the ElGamal PKE scheme [Gam85]. In order to encrypt
messages in Zq we rely on a public, onto, invertible mapping Ω : Zq → G.4 Let
ĝ be a generator in G. The public-key is PK 1 = ĝx̂ = ŷ for a random secret key
x̂←$ Zq, and the encryption of r ∈ Zq is equal to c1 := (c1

1, c
2
1) = (ĝρ1 , ŷρ1 ·Ω(r))

for a random ρ1←$ Zq.

CCA PKE: We use the PKE scheme due to Cramer and Shoup [CS98]. In order to
encrypt messages in Zq we rely on the same mapping Ω described above. Let

2Examples of such groups include elliptic curve groups and the subgroup QRp of Z∗p containing
the quadratic residues modulo a prime p = 2q + 1.

3For readers familiar with [BR14], the hashing algorithm corresponds to the (strong) HVZK
simulator and the collision-finding algorithm corresponds to the strong prover of the underlying
Sigma-protocol.

4As observed in [CPP06] relying on such an encoding might be computationally expensive; we
can adopt the same technique as in [CPP06] for obtaining an encoding-free solution.
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g1, g2 be generators in G, and let H : G3 → Zq be a standard collision-resistant
hash function. The public-key is PK 2 = (gx

1
1

1 g
x1

2
2 , g

x2
1

1 g
x2

2
2 , g

x3
1

1 g
x3

2
2 ) = (y1, y2, y3)

for a random secret key (x1
1, x

1
2, x

2
1, x

2
2, x

3
1, x

3
2)←$ Z6

q , and the encryption of
r ∈ Zq is equal to c2 := (c1

2, c
2
2, c

3
2, c

4
2) = (gρ2

1 , g
ρ2
2 , y

ρ2
3 · Ω(r), yρ2

1 · y
ρ2·t
2 ) for a

random ρ2←$ Zq and with t = H(c1
2, c

2
2, c

3
2).

NIZK: We use the Fiat-Shamir heuristic [FS86].5 Let G : {0, 1}∗ → Zq be a hash
function modeled as a random oracle. The language of Eq. (3.2) boils down
to prove knowledge of (r, ρ1, ρ2) ∈ Z3

q such that: (i) r = logg(h · ym); (ii) ρ1 =
logĝ c1

1; (iii) logg1 c
1
2 = ρ2 = logg2 c

2
2; (iv) c4

2 = yρ2
1 · y

ρ2·t
2 ; (v) c2

1/c
3
2 = ŷρ1 · y−ρ2

3 .
Notice that this is indeed sufficient, as proving knowledge of ρ1, ρ2 implies
knowledge of Ω(r) = c2

1/ŷ
ρ
1 = c3

2/y
ρ2
3 (and, in turn, Ω(r) uniquely determines

r).
The proofs in (i) and (ii) can be obtained from a Sigma-protocol for showing
knowledge of a discrete logarithm [Sch91]. The proof in (iii) can be obtained
from a Sigma-protocol for showing equality of two discrete logarithms [CP92].
The proof in (iv) and (v) can be obtained from a Sigma-protocol for showing
knowledge of a representation [Oka92].
Hence, the NIZK π has a type π := (π0, π1, π2, π3, π4) where: (i) π0 =
(α, γ) = (ga, βr + a) for random a←$ Zq and β =: G(h · ym||α); (ii) π1 =
(α1, γ1) = (ĝa1 , β1ρ1 + a1) for random a1←$ Zq and β1 =: G(c1

1||α1); (iii)
π2 = (α1

2, α
2
2, γ2) = (ga2

1 , ga2
2 , β2 · ρ2 + a2) for random a2←$ Zq and β2 =:

G(c1
2||c2

2||α1
2||α2

2); (iv) π3 = (α3, γ
1
3 , γ

2
3) = (ya

1
3

1 · y
a2

3
2 , β3 · ρ2 + a1

3, β3 · ρ2 · t+ a2
3),

for random a1
3, a

2
3←$ Zq and β3 = (c4

2||y1||y2||α3); (v) π4 = (α4, γ
1
4 , γ

2
4) =

(ŷa1
4 · ya

2
4

3 , β4 · ρ1 + a1
4,−β4 · ρ2 + a2

4), for random a1
4, a

2
4←$ Zq and β4 =

(c2
1/c

3
2||ŷ||y3||α4).6

Putting together the above constructions we obtain the following result.

Corollary 1. Let G be a group with prime order q. Under the DDH assumption in
G there exists a secret-coin chameleon hash function satisfying enhanced collision
resistance in the ROM, such that the hash value consists of a single element of G,
whereas the check value consists of 12 elements of G plus 7 elements of Zq.

Standard Model Instantiation

We give an instantiation based on the K-Linear assumption.
Let G1, G2, GT be groups of prime order q and let e : G1 × G2 → GT be

a non-degenerate, efficiently computable, bilinear map. Before describing the
ingredients, we briefly recall the Groth-Sahai [GS08] proof system for showing
multi-exponentiation equations. The CRS consists of vectors ~u1, . . . ~uK , ~u such that

5It might seem that using the construction of Dodis et al. [DHLW10] for obtaining a tSE NIZK in
the ROM is an overkill, as the Fiat-Shamir heuristic directly yields a full-fledged simulation-sound
extractable NIZK. However, the Fiat-Shamir transform is only known to satisfy a weaker form
of extractability [FKMV12] which is insufficient for our application. Alternatively, we could use
Fischlin’s transformation [Fis05], but this would probably result in longer proofs.

6For simplicity, we omit the description of the verification algorithm.
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~ui = (u0, 1, . . . , 1, ui, 1, . . . , 1) ∈ GK+1
1 , where u0, u1, . . . , uK are randomly chosen in

G∗1 and ~u is randomly chosen in the span of (~u1, . . . , ~uK).
Consider an equation of type g̃0 = g̃ϕ1

1 ·, · · · , ·g̃
ϕN
N , where g̃0, g̃1, . . . , g̃N ∈ G2 are

constants and ϕ1, . . . , ϕN ∈ Zq are variables. To generate a proof one first commits
to all the variables one by one; in particular, to commit to ϕi ∈ Zq, we sample
~si = (s1

i , . . . , s
K
i )←$ ZKq and compute ~ψi := ~uϕ

∏K
j=1 ~u

sji
j ∈ GK+1

1 (where vector
multiplication is defined component-wise). Hence, we return the proof elements πj =∏N
i=1 g̃

sji
i ∈ G2 for j ∈ [K]. In order to verify a proof π = (~ψ1, . . . , ~ψN , π1, . . . , πK),

we check that
N∏
i=1

ê(~ψi, g̃i) = ê(~u, g̃0)
K∏
j=1

~uj · πj ,

where ê : GK+1
1 × G2 → GK+1

T , such that ê((a1, . . . , aK+1), b) := (e(a1, b), . . . ,
e(aK+1, b)), is a bilinear map.

Public-Coin Hash: We use the same public-coin chameleon hash function de-
scribed in the previous section, based on the DL assumption in G2 (which is
implied by both the SXDH assumption and the DLIN assumption). Recall that
Rhash =Mhash := Zq, whereas G2 is the output range of the hash function.

CPA PKE: We use the Linear ElGamal PKE scheme, introduced by Boneh, Boyen
and Shacham [BBS04], which is based on the K-Linear assumption. Let Ω
be as above. At key generation we sample a random generator ĝK+1 ∈ G2,
and, for all i ∈ [K], define ĝi := ĝ

1/x̂i
K+1 for random x̂i ∈ Zq; the public key

is PK 1 = (ĝ1, . . . , ĝK+1), and the secret key is (x̂1, . . . , x̂K). The encryption
of r ∈ Zq is equal to c1 = (c1

1, . . . , c
K
1 , c

K+1
1 ) such that ci1 := ĝ

ρi1
i for random

ρi1←$ Zq and for all i ∈ [K], and cK+1
1 := Ω(r) · ĝ

∑K

i=1 ρ
i
1

K+1 .

CCA PKE: We use the Linear Cramer-Shoup PKE scheme, introduced in [Sha07a],
which is based on the K-Linear assumption. Let H : GK+2

2 → Zq be a collision-
resistant hash function. At key generation we sample random generators
g1, . . . , gK+1 ∈ G2, and random exponents xji ∈ Zq for all i ∈ [K + 1] and for
all j ∈ [3]. We then compute:

y1
1 := g

x1
1

1 g
x1

2
2 y1

2 := g
x2

1
1 g

x2
2

2 y1
3 := g

x3
1

1 g
x3

2
2

y2
1 := g

x1
1

1 g
x1

3
3 y2

2 := g
x2

1
1 g

x2
3

3 y2
3 := g

x3
1

1 g
x3

3
3

...
...

...

yK1 := g
x1

1
1 g

x1
K+1
K+1 yK2 := g

x2
1

1 g
x2
K+1
K+1 yK3 := g

x3
1

1 g
x3
K+1
K+1 ,

and return public key PK 2 := (g1, . . . , gK+1, y
1
1, . . . , y

1
K , y

2
1, . . . , y

2
K , y

3
1, . . . , y

3
K)

with corresponding secret key (x1
1, . . . , x

1
K+1, x
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a ciphertext:

c2 := (c1
2, . . . , c

K
2 , c

K+1
2 , cK+2

2 , cK+3
2 )

:=
(
g
ρ1

2
1 , . . . , g

ρK2
K , g

∑K

i=1 ρ
i
2

K+1 ,Ω(r) ·
K∏
i=1

(yi3)ρi2 ,
K∏
i=1

(yi1 · (yi2)t)ρi2
)
,

with t := H(c1
2, . . . , c

K+2
2 ). Observe that for K = 1 we obtain exactly the

Cramer-Shoup PKE scheme described in the previous section.

NIZK: We use the Groth-Sahai proof system [GS08]. In order to prove knowledge
of a witness (r, ρ1, ρ2) for ((c1,PK 1), (hk, h,m), (c2,PK 2)) ∈ LCH we use a
system of multi-exponentiation equations:

h · ym = gr

ci1 = ĝρ
i
1 ∀i ∈ [K]

ci2 = g
ρi2
i ∀i ∈ [K]

cK+1
2 = g

∑K

i=1 ρ
i
2

K+1

cK+3
2 =

K∏
i=1

(yi1 · (yi2)t)ρi2

cK+1
1 /cK+2

2 = ĝ

∑K

i=1 ρ
i
1

K+1 ·
K∏
i=1

(yi3)−ρi2 .

This corresponds to a system of 2K + 4 equations with witness (r, ρ1
1, . . . , ρ

K
1 ,

ρ1
2, . . . , ρ

K
2 ), and hence using the Groth-Sahai proof system we obtain that the

proof π consists of 2K + 1 commitments (each containing K + 1 elements of
G1) and 2K2 + 4K proof elements (in G2).

Putting together the above constructions we obtain the following result.

Corollary 2. Let G1,G2,GT be pairing based groups, and let K ≥ 1. Under the
K-Linear assumption there exists a secret-coin chameleon hash function satisfying
enhanced collision resistance in the standard model, such that the hash value consists
of a single group element, whereas the check value consists of 4K2 + 9K + 5 group
elements. In particular, the size of the check value is 18 group elements under the
SXDH assumption and 39 group elements under the DLIN assumption.

3.3 Blockchain Application

In this Section we discuss the blockchain technology and the motivations for the
creation of a redactable blockchain, our application based on an enhanced collision-
resistant chameleon hash functions.
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3.3.1 Overview

The cost of the bankruptcy of Lehman Brothers in 2008 to the United States
is estimated in trillions [U.S13] and triggered a chain of events that sent several
countries into economic recession or depression. One contributor to the crisis
was the centralized payment and monetary system based on clearinghouses that
act as intermediaries between buyers and sellers and take on the risk of defaults.
Unfortunately, clearinghouses add a significant cost to any interbank transactions
and do not always operate transparently.

Bitcoin is an innovative technology that may allow banks to settle accounts
between themselves without relying on centralized entities. It is considered the first
decentralized currency system that works on a global scale. It relies on crypto-
graphic proofs of work, digital signatures, and peer-to-peer networking to provide a
distributed ledger (called the blockchain) containing transactions. Digital currency
is, however, the simplest application of the blockchain technology. Bitcoin includes
a scripting language that can be used to build more expressive “smart contracts”,
basically cryptographically-locked boxes that can be opened if certain conditions are
verified. In addition, transactions can store arbitrary data via the OP_RETURN
mechanism.

The blockchain technology promises to revolutionize the way we conduct business.
Blockchain startups have received more than $1bn [Coi] of venture capital money to
exploit this technology for applications such as voting, record keeping, contracts,
etc. Conventional services are centralized and do not scale well. The blockchain
allows services to be completely decentralized. There is no need to rely on, or trust,
a single organization. It is a disruptive technology that will change the way money,
assets and securities are currently managed. Business agreements can be encoded as
smart contracts which in turn can handle automatically their executions along with
the arbitration of disputes, thus reducing cost and providing more transparency.
From a technology point of view, the blockchain is equally revolutionary. It provides
for the first time a probabilistic solution to the Byzantine generals problem, where
consensus is reached over time (after confirmations), and makes use of economic
incentives to secure the overall infrastructure.

Two approaches have emerged to facilitate the use of the blockchain technology
to implement decentralized services and applications (what is referred to as Bitcoin
2.0). The first “overlay” approach is to rely on the existing Bitcoin blockchain
and build a new framework on top of it. This is done through transactions with
OP_RETURN outputs which are unspendable and do not need to be stored in the
UTXO database. This is the only mechanism to add data in the blockchain approved
by the Bitcoin dev community as it does not cause UTXO “bloatin” and waste of
precious computing resources. The rationale of this approach is that the Bitcoin
blockchain already exists and is adopted by many, which makes it inherently more
secure and resilient. However, certain constraints and constants set by the creator
of Bitcoin (Satoshi) impede some (but not all) applications. For instance, blocks
are mined every 10 minutes on average and the Bitcoin scripting language is not
Turing-complete. This works perfectly for the currency, but forces other applications
to get around these limitations through cumbersome hacks. The second approach is
to build an alternative blockchain with all the desired features. This approach is
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gathering momentum (see, e.g, Ethereum [Eth]), and promises full decentralization.
It enables very expressive smart contracts that achieve a high degree of automation.

3.3.2 Motivation

The append-only nature of the blockchain is essential to the security of the Bitcoin
ecosystem. Transactions are stored in the ledger forever and are immutable. This fits
perfectly with the currency system. However, we argue that an immutable ledger is
not appropriate for all new applications that are being envisaged for the blockchain.
Whether the blockchain is used to store data or code (smart contracts), there must
be a way to redact its content in specific and exceptional circumstances. Redactions
should be performed only by trusted entities, under strict constraints, and with full
transparency and accountability. Some examples where a redactable blockchain is
desirable are outlined below.

(i) The ability to store arbitrary messages has already been abused, and now the
Bitcoin blockchain contains child pornography, improper content, and material that
infringes on intellectual rights (see e.g., [Hop13,Pea15,HC13]). The intent of these
abuses is to disrupt the Bitcoin system, since users may not be willing to participate
and download the blockchain for fear of being prosecuted for possession of illegal
or improper content on their computers. There are currently only 8-10K full nodes
that store the entire blockchain and if this number declines, the Bitcoin ecosystem
may be severely disrupted. In addition, improper content (gossip, pictures, etc.)
may affect the life of people forever if it is not removed from the blockchain. Thus,
appending new information is not an option in these cases.

(ii) Bitcoin 2.0 applications require re-writable storage. Smart contracts and
overlay applications may not work or scale if the blockchain is immutable. A smart
contract is essentially a sequence of instructions that a miner is going to run in
exchange for a compensation. Amending a contract or patching code, by appending
a new version of it, does not scale and wastes precious resources.

(iii) Is our society ready for permanent storage or perfect accountability? We
believe it is not and indeed much effort is spent to promote the “right to be forgotten”.
New blockchain applications promise to store files, notarize documents, manage
health records, coordinate IoT devices, administer assets, etc. But records should be
expunged in case they contain errors or sensitive information, or when it is required
by law. Even encryption may not help as keys are notoriously difficult to manage
and are often leaked.

(iv) Several financial institutions are exploring the benefits of blockchain-based
solutions to reduce cost and increase trust in interbank interactions. Budgets, trans-
actions, and financial results are routinely consolidated to create meaningful reports
while allowing entities to maintain distinct accounting structures. Consolidation is
difficult to achieve with immutable blockchains, since it is impossible to consolidate
past transactions without affecting any subsequent blocks.

3.3.3 Remarks

Proposing to affect the immutability of the blockchain may seem an ill-conceived
concept given the importance of the append-only nature of the blockchain. However,
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hard forks exist that can be used to undo recent transactions. As for hard forks, we
expect redactions to occur in rare and exceptional circumstances.

Why not applying a hard fork in the past? Hard forks can be seen as the
Undo operation and thus they make sense only for recently mined blocks. Imagine
making a hard fork for a block added to the blockchain, say, 5 years ago. All
subsequent blocks will be rendered invalid and all transactions from 5 years ago till
now will have to be reprocessed. Thus, regenerating the blockchain will take another
5 years assuming similar mining power.

Would this redaction mechanism make sense for Bitcoin? We target Bit-
coin 2.0 applications but we believe Bitcoin can also benefit from our solution.
Consider this trivial but effective attack against Bitcoin. (i) Divide objectionable
content (e.g., child or revenge pornography, sensitive or private information, etc.) in
packets as it is done with TCP/IP. (ii) Store each packet within the OP_RETURN
field of several Bitcoin transactions. (iii) After several blocks are mined, release a
simple script or provide a web page where the improper content can be reconstructed
as with TCP/IP packets. (iv) Wait for a lawsuit to be filed. If (when) this happens,
then Bitcoin could be legally shut down and the blockchain removed for good. Notice
that access to content on the Internet can be controlled, filtered out, or made it
hard to find. On the other end, content in the blockchain must always be available
and stored locally at each node.

Who can make redactions? We show how to make redactions given the knowl-
edge of a secret key. This key could be in the hands of miners, a centralized auditor,
or shares of the key could be distributed among several authorities. The actual way
the trapdoor key is managed depends upon the requirements of specific applications;
while we provide some examples (see Section 3.4.4), we stress that those are just a
few possibilities out of many.

Why can’t the blockchain be edited “by fiat", relying on meta-transac-
tions? It is possible to create a block revocation list that miners are instructed
to check and avoid. The problem however is that old blocks will still be there with
the information that was supposed to be redacted. Thus, this approach is pointless.
Another variant is to actually remove blocks, creating “holes" in the blockchain,
and instruct miners to ignore those blocks. This approach is even worse since the
blockchain is not valid anymore and exceptions must be hardcoded in the software
of each miner or made available as an authenticated blacklist.

Couldn’t the set of miners “vote" by their power, “sign" the new block
and insert it into the correct position? No, because this is essentially a hard
fork and all subsequent blocks will be invalid. Punching the blockchain makes it
invalid and can only be handled as described in the previous point.

If trusted authorities can redact the blockchain, can’t you get rid of
PoW-based consensus? Redactions, as hard forks, are supposed to happen
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very rarely, in case of emergencies (e.g., the DAO attack [dC16]) or when sensitive
information is leaked (e.g., revenge porn). Editors do not operate daily but only
in exceptional circumstances. They do not have the ability to run or maintain a
blockchain. Trusted authorities could be individuals, such as judges or arbitrators,
or/and organizations, such as the International Monetary Fund (IMF), the World
Trade Organization (WTO), Electronic Frontier Foundation (EFF), INTERPOL,
etc. They are not meant to operate blockchain infrastructures (as a simple analogy,
consider that the Securities and Exchange Commission (SEC) is not meant to run
stock and options exchanges or electronic securities markets but to intervene to
enforce federal securities laws). Thus, we must rely on PoW-based consensus to run
the blockchain.

Are these trusted authorities the same as in permissioned blockchain?
Not necessarily. In permissioned blockchain only specified actors (banks, financial
operators, individuals, etc.) can participate and post transactions. Some or all of
these actors could be allowed to redact the blockchain if they collaborate. Shares
of the chameleon hash key could be distributed among them so that the key is
reconstructed when shares are pooled together according to some access control
structure.

Could redactions have helped with the DAO attack? The DAO attack was
resolved with a hard fork. Technically there is no substantial difference between
hard forks and redactions for recent events. Our solution would help in case frauds
or unintended errors are discovered much later, when it is too late to apply a hard
fork and efficiently rebuild the blockchain.

Is blockchain immutability a chimera? The aftermath of the DAO attack
shows that immutability is contentious (DAO is dead, lawsuits are looming, two
parallel chains ETH/ETC were created, the future of Ethereum is in question,
etc.). Other than affecting privacy (see [Ten]), immutability also affects scalability
(see [DeR]). Our primary intent is to provide a technical answer to the question:
“How can I make a redactable blockchain?". However, we do believe immutability of
the blockchain should be reconsidered if Bitcoin 2.0 applications are to be turned
from lab experiments to real deployments.

3.3.4 The Chameleon Blockchain

We propose an approach to make the blockchain redactable; by redaction we mean
one of the following actions (and any combination of those): re-writing one or more
blocks, compressing any number of blocks into a smaller number of blocks, and
inserting one or more new blocks. Redactions can be made only by authorized
entities and under specific constraints; moreover redactions are publicly auditable
by existing miners, since they must approve the new blockchain and have access
to its old copies. However, new miners are oblivious, given that the blockchain
in our design is implemented as a history-independent data structure in the sense
introduced by Naor and Teague [NT01]. That is, no information can be deduced
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Bi−1 Bi Bi+1. . . . . .µµ

Bi−1 Bi Bi+1. . . . . .bµ

Bi−1 B′i Bi+1. . . . . .µµ

Figure 3.2. Redaction operations on a chameleon blockchain. In the top blockchain, all
padlocks are locked resulting in an immutable blockchain. In the middle blockchain, the
padlock from block Bi+1 to block Bi is open, meaning that the content of block Bi can
be redacted. In the bottom blockchain, the block Bi was redacted (resulting in block
B′

i) and all the padlocks are once again locked, making the blockchain immutable.

about the past from the current view of the blockchain (also called anti-persistence
in [NT01]).

All blockchain designs rely on a hash chain that connects each block to the
previous one, to create an immutable sequence. The immutability comes from the
collision resistance property of the hash function. The best way to grasp the concept
of a redactable blockchain is to think of adding a lock to each link of the hash chain
(see Figure 3.2): Without the lock key it is hard to find collisions and the chain is
immutable, but given the lock key it is possible to efficiently find collisions and thus
replace the content of any block in the chain. With the knowledge of the key, any
redaction is then possible: deletion, modification, and insertion of any number of
blocks. Note that if the lock key is lost or destroyed, then a chameleon blockchain
reverts to an immutable one.

The main idea of our design is to employ a chameleon hash function that is
collision-resistant unless the trapdoor is known. In a standard chameleon hash,
collisions must be kept private since the trapdoor can be extracted from a single
collision. In our enhanced collision resistant chameleon hash design, it is safe to
reveal any number of collisions.

3.4 Redacting the Blockchain

In this section we introduce our framework, explaining how to modify current
blockchain technologies in order to obtain a redactable blockchain. We start with
a brief description of a blockchain abstraction, due to Garay, Kiayias and Leonar-
dos [GKL15], in Section 3.4.1. We then put forward two new algorithms that can
be used to re-write the content of the blockchain, both in the centralized setting
where a trusted party is in charge of rewriting the blocks (in Section 3.4.2) and in
the decentralized setting where no such trusted party is available (in Section 3.4.3).
Finally, in Section 3.4.4, we comment on how the chameleon hash keys can be
managed in a few concrete scenarios.
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......

s′ = H(ctr, G(s, x; r))

HashPrev (s)

Transactions (x)

Nonce (ctr)

Randomness (r)

s′′ = H(ctr′, G(s′, x′; r′))

HashPrev (s′)

Transactions (x′)

Nonce (ctr′)

Randomness (r′)

Figure 3.3. The redactable blockchain structure (using a public-coin chameleon hash).
The field s of a block stores the value shown in the top white field of the previous block.
We note that the top white field is not stored in the block. The bottom darker field
(Randomness) is updated when the block is redacted (i.e., a collision is computed).

3.4.1 Blockchain Basics

We make use of the notation of [GKL15] to describe the blockchain. A block is a
triple of the form B = 〈s, x, ctr〉, where s ∈ {0, 1}κ, x ∈ {0, 1}∗ and ctr ∈ N. Block
B is valid if

validblockDq (B) := (H(ctr , G(s, x)) < D) ∧ (ctr < q) = 1.

Here, H : {0, 1}∗ → {0, 1}κ and G : {0, 1}∗ → {0, 1}κ are collision-resistant hash
functions, and the parameters D ∈ N and q ∈ N are the block’s difficulty level and
the maximum number of hash queries that a user is allowed to make in any given
round of the protocol, respectively.

The blockchain is simply a chain (or sequence) of blocks, that we call C. The
rightmost block is called the head of the chain, denoted by Head(C). Any chain C
with a head Head(C) := 〈s, x, ctr〉 can be extended to a new longer chain C′ := C||B′
by attaching a (valid) block B′ := 〈s′, x′, ctr ′〉 such that s′ = H(ctr , G(s, x)); the
head of the new chain C′ is Head(C′) = B′. A chain C can also be empty, and in
such a case we let C = ε. The function len(C) denotes the length of a chain C (i.e.,
its number of blocks). For a chain C of length n and any k ≥ 0, we denote by Cdk
the chain resulting from removing the k rightmost blocks of C, and analogously we
denote by keC the chain resulting in removing the k leftmost blocks of C; note that
if k ≥ n then Cdk = ε and keC = ε. If C is a prefix of C′ we write C ≺ C′. We also
note that the difficulty level D can be different among blocks in a chain.

The work of [GKL15] models the Bitcoin protocol in a setting where the number
of participants is always fixed and the network in synchronized. They show that
the protocol satisfies consistency in this model, meaning that all honest participants
have the same chain prefix of the blockchain. A more recent work by Pass, Seeman
and shelat [PSas16] analyses the case where the network is asynchronous and the
number of participants can dynamically change. We point that our framework is
independent of the network type in these models.

3.4.2 Centralized Setting

The main idea behind our approach is to set the inner hash function (i.e., the
function G), used to chain the different blocks in the blockchain, to be a chameleon
hash function. Intuitively, re-writing the content of each block is possible by finding
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collisions in the hash function (without modifying the outer hash function H). Below,
we detail this idea in the simple setting where only a single (trusted) central authority
is able to redact the blockchain; see Section 3.4.4 for concrete examples where this
case applies.

In order for the above to work, we require some modifications to the previously
defined block. A block is now a tuple B := 〈s, x, ctr , (h, ξ)〉, where the components
s, x and ctr are the same as before, and the new component (h, ξ) is the hash/check
pair for a chameleon hash. The function G is defined to be a secret-coin chameleon
hash CH = (HGen,Hash,HVer,HCol), and the validation predicate for a block is now
equal to

validblockDq (B) := (H(ctr , h) < D) ∧ (HVer(hk, (s, x), (h, ξ))) ∧ (ctr < q) = 1.

Given a chain C with head Head(C) := 〈s, x, ctr , (h, ξ)〉, we can extend it to a longer
chain by attaching a (valid) block B′ := 〈s′, x′, ctr ′, (h′, ξ′)〉 such that s′ = H(ctr , h).
Notice that the domain of the chameleon hash can be easily adjusted to the proper
size by first hashing the input of Hash with a regular collision-resistant hash of the
desired output size. We also stress that the verification of a chameleon hash value
needs to be computed by its own verification function (i.e., by running HVer), and
not simply by recomputing the hash like it is done with standard (deterministic)
hash functions.

The case where the chameleon hash is public-coin can be cast as a special case of
the above. However, note that there is no need for storing the hash value h, as this
value can be computed as a deterministic function of the chameleon hash function’s
input and randomness. Thus, in this case, a block has a type B := 〈s, x, ctr , r〉,
where r is the randomness for the chameleon hash. The validation predicate for a
block becomes

validblockDq (B) := (H(ctr ,Hash(hk, (s, x); r)) < D) ∧ (ctr < q) = 1.

Finally, given a chain C with head Head(C) := 〈s, x, ctr , r〉, we can extend it to
a longer chain by attaching a (valid) block B′ := 〈s′, x′, ctr ′, r′〉 such that s′ =
H(ctr ,Hash(hk, (s, x); r)). See Fig. 3.3 for a pictorial representation.

Rewriting blocks. Next, we define a chain redacting algorithm (see Algorithm 1)
that takes as input a chain C to be redacted, a set of indices that represents the
positions (in the chain C) of the blocks that are going to be redacted, and another
set with the new x′’s values for each of the blocks to be redacted. The algorithm
also takes as input the chameleon hash trapdoor key tk. The intuition behind it
is that, for each block to be redacted, we compute a collision for the hash of the
block with its new content x′. A new chain C′ is created by replacing the original
block with its modified counterpart. We note that at the end of the execution of
Algorithm 1, the central authority should broadcast the new redacted chain as a
special chain, meaning that every user of the system should adopt this new redacted
chain in favor of any other chain, even longer ones. The way this is achieved depends
on the actual system in use.

Note that each time a block is redacted using Algorithm 1, a collision for
the underlying chameleon hash function is exposed. Hence, it is important that
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Algorithm 1: Chain Redact
input :The input chain C of length n, a set of block indices I ⊆ [n], a set of

values {x′i}i∈I , and the chameleon hash trapdoor key tk.
output :The redacted chain C′ of length n.

1 C′ ← C;
2 Parse the chain C′ as (B1, · · · , Bn);
3 for i := 1, . . . , n do
4 if i ∈ I then
5 Parse the i-th block of C′ as Bi := 〈si, xi, ctr i, (hi, ξi)〉;
6 ξ′i ← HCol(tk, (hi, si||xi, ξi), (si||x′i));
7 B′i := 〈si, x′i, ctr i, (hi, ξ′i)〉;
8 C′ ← C′dn−i+1||B′i||ieC′;

9 return C′

the ability to see arbitrary collisions does not expose the secret trapdoor key, as
otherwise unauthorized users might be able to rewrite arbitrary blocks in the chain.
In Section 3.2 we explain how to generically leverage any standard collision-resistant
chameleon hash function into one additionally meeting such a key-exposure freeness
requirement.

Compressing the chain. Another possibility with chameleon blockchains is to
completely remove entire blocks from a chain. This can be essential for scalability
purposes, such as saving disk space and computational power necessary when
handling larger chains. We present an algorithm (see Algorithm 2) for such a “chain
compressing” functionality. The intuition behind it is that in order to remove the
block Bi it is necessary to redact the block Bi+1 by assigning si+1 ← si. A collision
then needs to be computed for Bi+1 producing the new block B′i+1 that is inserted
in the chain in place of the Bi+1 block, leaving the chain in a consistent state. As
in Algorithm 1, we also note that at the end of the execution of Algorithm 2, the
central authority should broadcast the new compressed chain as a special chain,
meaning that every user of the system should adopt this new redacted chain in favor
of any other chain, even longer ones.

We note that in Algorithm 2, if the set I contains only indexes to successive
blocks, the execution can be optimized to essentially one execution of the for loop.
This is because in order to remove blocks Bk to Bk+j , it is sufficient to redact only
block Bk+j+1 (i.e., the next remaining block).

3.4.3 Decentralized Setting

Below, we explain how to adapt our framework to the decentralized setting, where
there is no central trusted authority. The main idea is to have the trapdoor key
be secretly shared among some fixed set of users that are in charge of redacting
the blockchain. When a block needs to be redacted, the users from this set engage
in a secure multiparty computation (MPC) protocol to compute Algorithm 1 and



3.4 Redacting the Blockchain 47

Algorithm 2: Chain Compression
input :The input chain C of length n, a set of block indices I ⊆ [n] and the

chameleon hash trapdoor key tk.
output :The new chain C′ of length n− |I|.

1 C′ ← C;
2 Parse the chain C′ as (B1, · · · , Bn);
3 for i := 1, . . . , n do
4 if i ∈ I then
5 Parse the i-th block of C′ as Bi := 〈si, xi, ctr i, (hi, ξi)〉;
6 Parse the i+ 1-th block of C′ as

Bi+1 := 〈si+1, xi+1, ctr i+1, (hi+1, ξi+1)〉;
7 ξ′i+1 ← HCol(tk, (hi+1, si+1||xi+1, ξi+1), (si||xi+1));
8 B′i+1 := 〈si, xi+1, ctr i+1, (hi+1, ξ

′
i+1)〉;

9 C′ ← C′dn−i||B′i+1||i+1eC′;

10 return C′

Algorithm 2 in a fully distributed manner.

Ideal Functionalities

During the set up of the system, we fix a subset U of cardinality n, containing the
users that will be in charge of redacting the blockchain content. We remark that the
actual choice of the subset U can be completely dependent on the application and
on the system requirements; we discuss some examples in Section 3.4.4.

Following the common practice in the setting of MPC, we now define two ideal
functionalities that aim at capturing the security requirements for generating the
hash keys and for redacting the blockchain in the decentralized setting. These
functionalities will later be realized by concrete MPC protocols, in both cases of
semi-honest and fully malicious corruptions.

Key generation. When the system is set-up for the first time, we need to run
the key generation algorithm HGen for the underlying chameleon hash function,
obtaining a public hash key hk and a secret trapdoor key tk. Since no user is allowed
to know the trapdoor key, the idea is to have each player Pi in the set U obtain a
share τi of tk. This is the purpose of the ideal functionality described in Fig. 3.4,
which is parametrized by a secret sharing scheme (Share,Rec).

Recall that a t-out-of-n secret sharing scheme (Share,Rec) consists of a pair of
algorithms such that: (i) The randomized algorithm Share takes as input a target
value x and returns a sequence of n shares τ1, . . . , τn; (ii) The deterministic algorithm
Rec takes as input n shares τ1, . . . , τn and returns a value x or an incorrect output
symbol ⊥. The main security guarantee is that any subset of t shares (a.k.a. an
unqualified set) reveals no information on the shared value x; on the other hand,
any subset of t + 1 (or more) shares allows to efficiently recover x. We refer the
reader, e.g., to [Bei11] for more details on secret sharing; some examples are also
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Key Generation Functionality:

1. After receiving the “start” signal from all honest parties, run
(hk, tk)←$ HGen(1κ) and send hk to the adversary.

2. We assume a secret sharing scheme (Share,Rec) is given, with which the
trapdoor key tk can be secret-shared. For each dishonest party Pj , receive a
share τj from the adversary.

3. Construct a complete set of shares (τ1, · · · , τn) for the trapdoor key tk taking
into consideration all the dishonest shares sent by the adversary. We note that
it is always possible to construct such a set of shares since all the dishonest
parties form an unqualified set for the secret sharing scheme. Send τi to each
honest party Pi.

Figure 3.4. The ideal functionality for the distributed key generation

discussed below.

Chain redaction. When a block B := 〈s, x, ctr , (h, ξ)〉 needs to be redacted into
a modified block B′ := 〈s, x′, ctr , (h, ξ′)〉, each user in the set U needs to inspect its
own blockchain and find block B. Hence, the players need to execute Algorithm 1
in a distributed manner. In particular, each player Pi is given as input its own share
τi of the chameleon hash trapdoor key, and they all need to run the collision-finding
algorithm HCol on common input ((h, s||x, ξ), s||x′), in order to obtain the modified
check value ξ′.

This is the purpose of the ideal functionality described in Fig. 3.5, which is
again parametrized by a secret sharing scheme (Share,Rec) (in fact, the same secret
sharing scheme as for the functionality of Fig. 3.4). For simplicity, we described
the functionality for the general case where the goal is to find collisions between
arbitrary messages m and m′. Note that actively corrupted players might submit
incorrect shares, and the secret sharing scheme needs to cope with such a possibility.
Also note that after each player receives the modified value ξ′ for the new block B′,
each of the users in U constructs a new chain by replacing block B with block B′.
Thus, the redacted chain is broadcast to all users in the system as a new special
chain that should replace any other chain, even longer ones. Although the latter
needs to be done in an application-specific manner, we recall that in practice the
redact operation is not going to be performed very often, but only in case there is a
need to redact undesirable content from a given block.

The decentralized version of Algorithm 2 is similar to the one described above,
the only difference being that instead of redacting a block Bi, a new chain is built
without the block Bi in it. To keep the chain valid the block Bi+1 needs to be
redacted, as detailed in Algorithm 2. The latter can be achieved using the same
ideal functionality as in Fig. 3.5, by simply adjusting the input messages from the
users.
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Collision-Finding Functionality:

1. Receive the shares τi from each party Pi and reconstruct the trapdoor key
tk := Rec(τ1, · · · , τn). Note that the shares of the dishonest parties are chosen
by the adversary.

2. Upon receiving a “compute collision” signal for the pair ((h,m, ξ),m′) from
all honest parties, compute ξ′ ← HCol(tk, (h,m, ξ),m′) and send (h,m, ξ) and
ξ′ to the adversary.

3. Upon receiving an “OK” signal from the adversary forward the value ξ′ to all
honest parties, otherwise forward ⊥ to all honest parties.

Figure 3.5. The ideal functionality for the distributed collision-finding algorithm

Concrete Instantiations

We now present concrete protocols for securely realizing the ideal functionalities
described in the previous section. For the sake of concreteness and practicality, we
chose to work with the (public-coin) chameleon hash function introduced by Ateniese
and de Medeiros [AdM04]; this construction satisfies enhanced collision resistance
(cf. Definition 17) in the generic group model, based on the Discrete Logarithm
assumption. After presenting the hash function, we deal separately with the setting
in which the corrupted players within the set U are assumed to be semi-honest (i.e.,
they always follow the protocol but try to learn additional information from the
transcript) and fully malicious (i.e., they can arbitrarily deviate from the protocol
description).

The hash function. Let p, q be prime such that p = 2q + 1, and let g be a
generator for the subgroup of quadratic residues QRp of Z∗p. Consider the following
public-coin chameleon hash function (HGen,Hash,HCol).

• (y, x)←$ HGen(1κ): The trapdoor key tk is a random value x ∈ [1, q − 1], and
the hash key hk is equal to y = gx.

• h := Hash(y,m; r, s): To hash a message m ∈ {0, 1}∗, pick random r, s←$ Zq,
and return h := r − (yH(m||r) · gs mod p) mod q where H : {0, 1}∗ → Zq is a
standard-collision resistant hash function.

• (r′, s′)←$ HCol(x, (h,m, r, s),m′): To compute a collision for message m′, pick
a random k ∈ [1, q − 1] and compute r′ := h + (gk mod p) mod q and s′ :=
k −H(m′||r′) · x mod q. Return (r′, s′).

Semi-honest setting. As a warm up we consider the case of passive corruption,
where up to t players in the set U are semi-honest. For this setting, we will rely on the
following simple secret sharing scheme (Share,Rec): (i) Upon input a value x ∈ Zq,
algorithm Share samples random τ1, . . . τn−1←$ Zq, sets τn := x −

∑n−1
i=1 τi mod q,

and returns (τ1, . . . , τn); (ii) Algorithm Rec takes as input τ1, . . . , τn ∈ Zq and returns
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x =
∑n
i=1 τi mod q. The above is easily seen to be an (n− 1)-out-of-n secret sharing

scheme.
Next, we describe two simple MPC protocols Π1

sh and Π2
sh for securely realizing

the functionality of Fig. 3.4 and Fig. 3.5 (respectively).

• Consider the following n-party protocol Π1
sh. Each player Pi picks a random

τi ∈ Zq and then all players engage into a semi-honest MPC protocol for
computing y =

∏n
i=1 g

τi mod p; each player outputs (y, τi). This protocol is
easily seen to realize the functionality of Fig. 3.4 under semi-honest corruption
of up to n− 1 players. Indeed, as long as one of the players is honest, the value
y (with corresponding trapdoor x :=

∑n
i=1 τi) will be uniformly distributed, as

required.

• Consider the following n-party protocol Π2
sh, on common input ((h,m, r, s),m′).

First, each player Pi chooses a random ki←$ Zq and then all players engage into
a semi-honest MPC protocol for computing r′ := h+

(∏n
i=1 g

ki mod p
)

mod q.
Second, the players engage into a semi-honest MPC protocol for computing∑n
i=1 ki −H(m′||r′) ·

∑n
i=1 τi mod q, where the private input of Pi is defined

to be (ki, τi). Finally, each player outputs (r′, s′).

The above protocol can be easily seen to securely realize the functionality of
Fig. 3.5 under semi-honest corruptions. The number of tolerated corruptions
depends on the semi-honest MPC protocols for performing the computations
described above. Suitable protocols, for the setting where at least half of the
players are honest, are described, e.g., in [BGW88,AL11].

Malicious setting. We briefly explain how to extend the previous protocol to
the setting of active corruptions. The main difficulty here is that malicious players
can now use incorrect shares. In order to ensure that the correct trapdoor is re-
constructed, we rely on so-called robust secret sharing. Informally, a secret sharing
scheme (Share,Rec) is δ-robust if an adversary adaptively modifying at most t shares
computed via Share can cause the output of Rec to be wrong with probability at
most δ. See, e.g., [RB07,BPRW15] for a formal definition.

Before adapting the protocols, we recall the standard secret sharing scheme due
to Shamir [Sha79]: (i) Upon input a value x ∈ Zq, algorithm Share picks random
coefficients α1, . . . , αt−1 ∈ Zq and defines τi := x + α1 · i + · · · + αt−1 · it−1 mod q
for all i ∈ [n]; (ii) Upon input t shares (τ1, . . . , τt), algorithm Rec interpolates the
polynomial α(X) = α0 +α1 ·X + · · ·+αt−1 ·Xt−1 and returns α(0). Shamir’s secret
sharing can be made robust against corruption of at most t < n/3 shares when
used in tandem with Reed-Solomon decoding during the reconstruction procedure.
Alternatively, for tolerating a higher threshold t < n/2 (which is also the maximal
threshold for such schemes [Man11]) one could use Shamir’s secret sharing in
conjunction with information-theoretic message authentication codes, as proposed
by Rabin and Ben-Or [RB89]. This results in shares of sub-optimal size µ+ Õ(n · κ),
where µ is the bit-size of the message, and κ is the security parameter ensuring
δ = 2−κ; robust schemes with almost optimal share size have recently been designed
in [BPRW15].
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Below is a sketch of how the protocols Π1
sh and Π2

sh described above can be
adapted to the malicious setting, where for simplicity we use Shamir’s secret sharing
in tandem with Reed-Solomon decoding.

• Consider the following n-party protocol Π1
mal. Each player Pi samples uniformly

at random xi := (αi0, αi1, . . . , αit−1) ∈ Ztq. Hence, the players engage in an MPC
protocol for computing the function (x1, . . . , xn) 7→ ((y, α(1)), . . . , (y, α(n))),
where y = gα(0) and

α(X) :=
n∑
i=1

αi0 +
n∑
i=1

αi1 ·X + · · ·+
n∑
i=1

αit−1 ·Xt−1.

• Consider the following n-party protocol Π2
mal. The protocol proceeds similarly

to Π2
sh with the following differences. In the first step the random value k

is shared among the players using Shamir’s secret sharing (as done in Π1
mal);

denote by β(X) the corresponding polynomial, and by β(i) the share obtained
by player Pi. In the second step the players engage in an MPC protocol
for computing the value r′ = h+ (gβ̂(0) mod p) mod q, where the polynomial
β̂(X) is reconstructed by using the (possibly corrupted) shares β(i) from the
players, via the Berlekamp-Welch [WB86] algorithm. In the third step the
players engage in another MPC protocol for computing s′ = β̂(0)−H(m′||r′′) ·
α̂(0) mod q, where the private input of each player Pi is (α(i), β(i)) and α̂(X),
β̂(X) are again reconstructed by using the (possibly corrupted) shares α(i),
β(i) from the players, via the Berlekamp-Welch algorithm.

Note that the above protocols rely on auxiliary MPC protocols with malicious
security, for computing arithmetic functions in Zq. Suitable MPC protocols for the
above tasks, for the setting where at least two thirds of the players are honest, are
described, e.g., in [BGW88,AL11,DFK+06].

3.4.4 On Key Management

Although we view the technical tools that make redactions possible as the main
feature of this application, a natural question that may arise is how the trapdoor
key for the chameleon hash function is managed. We stress that the answer to this
question is completely application dependent, but we still provide some examples.

Below we briefly describe three types of blockchains that occur in real-world
applications [But15], and clarify how the trapdoor key could be managed in each
case.

• Private (or permissioned) blockchain: In this type of blockchain, which is
widely used by the financial sector [PB16], the write permissions are only given
to a central authority, and the read permissions may be public or restricted.
In this case the key management becomes simple; the trapdoor key could be
given to the central authority that has the power to compute collisions and
therefore redact blocks. This scenario is described in Section 3.4.2.

• Consortium blockchain: In this type of blockchain the consensus is con-
trolled by a predetermined set of parties (i.e., a consortium). In this case
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the trapdoor key can be shared among all the parties of the consortium, and
redactions can be realized using MPC, as described in Section 3.4.3.

• Public (or permissionless) blockchain: This type of blockchain is com-
pletely decentralized, and any party is allowed to send transactions to the
network and have them included in the blockchain (as long as the transactions
are valid). The consensus process is decentralized and not controlled by any
party. The best example of a public blockchain is Bitcoin. In this case we have
two options to manage the trapdoor key (both using MPC, as described in
Section 3.4.3).

1. The trapdoor key can be distributed among all the parties (full miners)
of the network. The drawback of this solution is that, if the number
of parties in the network is too big (e.g., > 200), it might not be very
efficient due to performance issues of the MPC protocol.

2. The trapdoor key can be distributed among a carefully chosen subset of
the parties. For example, in Bitcoin it is well known that the majority of
the network hashing power is actually controlled by a small number of
parties (e.g., the top 7 mining pools control almost 70% of the network
total hashing power [Inf]).
Although we acknowledge that the concentration of hashing power to a
small number of parties can be unhealthy to the system, this solution does
not change the existing Bitcoin trust assumption (i.e., Bitcoin already
assumes trusted majority).
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The Bad

In this chapter we cover the use of backdoors with the intention of disrupting the
security of cryptographic primitives. For that purpose, we cover subversion attacks
against signature schemes. Starting in Section 4.2 we introduce the definitions of
subversion attacks and undetectability. In Section 4.3 we present two subversion
attacks against signature schemes; the first is an adaptation of the attack from
Bellare et al. [BPR14] to signatures that is successful against signature schemes with
at least 7-bits or randomness. The second is a novel attack against coin-extractable
schemes, with even a single bit of randomness.

4.1 Background

Balancing national security interests with the rights to privacy of lawful citizen is
always a daunting task. It has been particularly so in the last couple of years after the
revelations of Edward Snowden [PLS13,BBG13,Gre14] that have evidenced a massive
collection of metadata and other information perpetrated by several intelligence
agencies. It is now clear that intelligence operators were not just interested in
collecting and mining information but they also actively deployed malware, exploited
zero-day vulnerabilities, and carried out active attacks against standard protocols.
In addition, it appears some cryptographic protocol specifications were modified to
embed backdoors.

Snowden also disclosed the subversion of the NIST standard for pseudorandom
number generator (PRG), called Dual_EC_DRBG [Per13]. It was revealed that it
contained a backdoor embedded in its public parameters that made it possible to
predict the outputs of the PRG with the knowledge of the backdoor.

Whether this activity was effective or even allowed by the constitution is open to
debate and it is indeed being furiously discussed among policy makers, the public,
and the intelligence community. Ultimately, a balance between security and privacy
must be found for a free and functioning society.
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The ability of substituting a cryptographic algorithm with an altered version was
first considered formally by Young and Yung (extending previous works of Simmons
on subliminal channels [Sim83,Sim84]), who termed this field kleptography [YY96,
YY97]. The idea is that the attacker surreptitiously modifies a cryptographic scheme
with the intent of subverting its security. This research area has recently been
revitalized by Bellare et al. [BPR14] who considered encryption algorithms with
the possibility of mass surveillance under the algorithm-substitution attack. They
analyzed the possibility of an intelligence agency substituting an encryption algorithm
with the code of an alternative version that undetectably reveals the secret key or
the plaintext. What they uncovered is that any randomized and stateless encryption
scheme would fall to generic algorithm-substitution attacks. The only way to achieve
a meaningful security guarantee (CPA-security) is to use a nonce-based encryption
that must keep state. Unfortunately, only stateless schemes are deployable effectively
with the current network technology and indeed all deployed encryption algorithms
are in this class.

In this Chapter we analyze digital signature schemes under the so-called sub-
version attacks (SAs), that in particular include algorithm-substitution and klep-
tographic attacks as a special case, but additionally cover more general malware
and virus attacks. We stress that our intention is not to propose schemes that can
be abused by criminals to avoid monitoring. We are motivated by pure scientific
curiosity and aspire to contribute to an active field of research.

4.2 Subverting Signatures

We introduce a new and generic framework and definitions for subversions of digital
signatures. In the standard black-box setting, a signature scheme should remain
unforgeable even against an adversary able to obtain signatures on (polynomially
many) chosen messages. Our security definitions empower the adversary with the
ability of continuously subverting the signing algorithm within a class A of allowed
SAs. For each chosen subversion in the class, the adversary can access an oracle
that answers (polynomially many) signature queries using the subverted signature
algorithm. Importantly, the different subversions can be chosen in a fully-adaptive
manner possibly depending on the target verification key of the user.

We believe our model is very general and flexible, as it nicely generalizes previous
models and definitions. First off, when the class A consists of a set of algorithms
containing a secretly embedded backdoor, and in case the adversary is restricted
to non-adaptively choose only a single subversion algorithm from this class, we
obtain the setting of algorithm-substitution and kleptographic attacks as a special
case. However, we note that the above definition is far more general as it covers
(fully-adaptive and continuous) tampering with the computation performed by the
signing algorithm (within the class A). This models, for instance, a machine
running a signature software infected by a malware (e.g., via a buffer overflow
attack [One96,Fry00,PB04]); we also obtain memory and randomness tampering
(see Section 1.3) as a special case.

Clearly, without making any restriction on the class A (or without making
additional assumptions) there is no hope for security: An arbitrary subverted
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signature algorithm could, for instance, just ignore all inputs and output the secret
key.

We proceed to define what it means for an adversary B to subvert a signature
scheme SS = (KGen,Sign,Vrfy). We model subversion as the ability of the adversary
to replace the genuine signing algorithm with a different algorithm within a certain
class A of Subversion Attacks (SAs). A subversion of SS is an algorithm Ã ∈ A,
specified as follows.

• Algorithm Ã(·, ·; ·) takes as input a signing key SK ∈ SK, a message m ∈M,
random coins r ∈ R, and outputs a subverted signature σ̃ ∈ Σ, where σ̃ :=
Ã(SK ,m; r). Notice that algorithm Ã is completely arbitrary, with the only
restriction that it maintains the same input-output interfaces as the original
signing algorithm.

In particular, algorithm Ã can hard-wire arbitrary auxiliary information chosen
by the adversary, which we denote by a string α ∈ {0, 1}∗. In general we also allow
algorithm Ã to be stateful, even in case the original signing algorithm is not, and we
denote the corresponding state by τ ∈ {0, 1}∗; the state is only used internally by
the subverted algorithm and never outputted to the outside.

In the next section we define what it means for a class of SAs to be undetectable
by a user. Some of our definitions are similar in spirit to the ones put forward
in [BPR14], except that our modelling of subversion is more general (see below for a
more detailed comparison).

Public/Secret Undetectability

By undetectability, we mean the inability of ordinary users to tell whether signa-
tures are computed using the subverted or the genuine signing algorithm. We will
distinguish between the case where a subversion is publicly or secretly undetectable.
Roughly speaking, public undetectability means that no user can detect subversions
using the verification key VK only (i.e., without knowing the signing key SK ); secret
undetectability means that no user, even with knowledge of the signing key SK , can
detect subversions.

A formal definition follows. While reading it, bear in mind that the challenger
plays the role of the “bad guy” trying to sabotage the signature scheme without
being detected.

Definition 18 (Public/Secret Undetectability). Let SS = (KGen, Sign,Vrfy) be a
signature scheme, and A be some class of SAs for SS. We say that A is secretly
(t, q, ε)-undetectable w.r.t. SS if for all PPT users U running in time t, there exists
an efficient challenger such that

∣∣∣P [U wins]− 1
2

∣∣∣ ≤ ε(κ) in the following game:

1. The challenger runs (VK ,SK) ← KGen(1κ), chooses an algorithm Ã ∈ A
(possibly depending on VK), samples b←$ {0, 1} and gives (VK ,SK ) to U.

2. The user U can ask queries mi ∈M, for all i ∈ [q]. The answer to each query
depends on the secret bit b. In particular, if b = 1, the challenger returns
σi ← Sign(SK ,mi); if b = 0, the challenger returns σ̃i ← Ã(SK ,mi).
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3. Finally, U outputs a value b′ ∈ {0, 1}; we say that U wins iff b′ = b.

We say that A is publicly undetectable w.r.t. SS if in step 1. of the above
game, U is only given the verification key. Moreover, whenever ε(κ) = ν(κ) and
t, q = poly(κ) we simply say that A is secretly/publicly undetectable w.r.t. SS.

Our definition of undetectability is similar to the corresponding definition con-
sidered by Bellare et al. [BPR14] for the case of symmetric encryption. One key
difference is that, in the definition above, the challenger is allowed to choose the
subversion algorithm possibly depending on the verification key of the user.1

We note that our definition does not capture other means of detection, such as
measuring the running time of algorithms, or other types of side channel detection.

Note that it could be potentially easier for user U to detect Ã in practice. User
U could, for example, promptly detect an anomaly if the running time of Ã is
significantly different from the running time of the signing algorithm Sign.

While one could in principle define even stronger forms of undetectability, e.g.
by requiring that continuous and fully-adaptive SAs remain undetectable, we do
not pursue this direction here. The reason for this is that the attacks we analyze in
Section 4.3 are non-adaptive, with similar running time, and only require to use a
single subversion.

Secret vs. public undetectability. While secret undetectability clearly implies
public undetectability, the converse is not true. In particular, in Section 4.4.2 we
show that there exists a signature scheme SS and a set of subversions A of it such
that A is publicly undetectable w.r.t. SS but it is secretly detectable w.r.t. SS.
Moreover, in Section 4.3.1 we show that it is possible to subvert (in a strong sense)
any sufficiently randomized signature scheme in a way that is secretly undetectable.

Multi-user setting. For simplicity Definition 18 considers a single user. We
provide an extension to the more general setting with u ≥ 2 users, together with a
complete picture of the relationships between different notions, in Section 4.4.

4.3 Mounting Subversion Attacks

In Section 4.3.1 we show that the biased-randomness attack of [BPR14] (adapted
to the case of signatures), satisfies secret undetectability as per Definition 18 while
allowing to recover the user’s signing key with overwhelming probability. This
attack allows to break all signature schemes using a sufficient amount of randomness;
in Section 4.3.2 we present a new attack allowing to surreptitiously subvert even
signature schemes using only little randomness (say 1 bit), provided that the targeted
scheme satisfies an additional property.

1Looking ahead, our new attack (cf. Section 4.3.2) will rely on this feature in the multi-user
setting.
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SA class AFbias

Let SS = (KGen, Sign,Vrfy) be a randomized signature scheme with randomness
space R, and F : {0, 1}κ × {0, 1}∗ → {0, 1} be a pseudorandom function. The class
AFbias consists of a set of algorithms {Ãs,τ}s∈{0,1}κ,τ=1, where each algorithm in the
class behaves as follows:

Ãs,τ (SK ,m):

• For |SK | = `, let i := τ mod `.
• Define the function g(·) := Sign(SK ,m; ·)||τ and sample a random

element r̃ from the distribution

R̃F (s,·),g(·)(SK [i],R) := {r ∈ R : F (s, g(r)) = SK [i]}. (4.2)

• Return the signature σ := Sign(SK ,m; r̃), and update the state
τ ← τ + 1.

Extracting the signing key. Given as input a vector of signatures ~σ = (σ1, ..., σ`),
for each signature σi ∈ ~σ try to extract the i-th bit of the signing key by defining
SK ′[i] := F (s, σi||i). Return the signing key SK ′ := (SK ′[1], . . . ,SK ′[`]).

Figure 4.1. Attacking coin-injective schemes

4.3.1 Attacking Coin-Injective Schemes

We start by recalling an information-theoretic lemma from [BPR14]. Suppose
g : R → R′ where R,R′ ⊆ {0, 1}∗, f : {0, 1}∗ → {0, 1}, and ρ = |R|. For b ∈ {0, 1}
consider the following biased distribution:

R̃f,g(b,R) = {r ∈ R : f(g(r)) = b}. (4.1)

The lemma below roughly says that if a value r is chosen at random from the
real distribution R, the probability that r is also in the biased distribution R̃ is high
if |R| is large enough.

Lemma 3 (Lemma 1 of [BPR14]). Let f , g, b, R, and R̃ = R̃f,g(b,R) be as defined
above. Then, if g is injective and f is drawn at random, for all r ∈ R we have

P
r̃←$ R̃

[r = r̃] = (1− 2−ρ)/ρ.

The following attack is based on the biased-randomness attack from [BPR14].
Roughly, what it does is to embed a trapdoor—a key for a pseudorandom function—
in the subverted signing algorithm and to “bias” the randomness in a way that it
becomes possible to any party that knows the trapdoor to leak one bit of the signing
key for each signed messaged under that signing key. Hence, if the adversary can
obtain at least |SK | signed messages then it can later extract the entire signing key
in full.

For the analysis, which relies on Lemma 3, we will need to assume the signing
function is injective w.r.t. its random coins—a notion which we define below.
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Definition 19 (Coin-injective). We say that SS is coin-injective if for all m ∈M,
and for all (VK ,SK )← KGen(1κ), we have that Sign(SK ,m; ·) is injective.

Theorem 2. Let F : {0, 1}κ × {0, 1}∗ → {0, 1} be a (tprf , qprf , εprf)-secure PRF. For
a randomized, coin-injective signature scheme SS with randomness space of size
ρ = |R|, consider the class of SAs AFbias described in Fig. 4.1. Then,

(i) AFbias is secretly (t, q, ε)-undetectable for t ≈ tprf , q ≈ qprf and ε ≤ q · 2−(ρ+1) +
εprf .

(ii) A random Ã ∈ AFbias recovers the signing key of the user with probability at
least (1− (1/2 + εprf)ρ)` where ` is the size of the signing key.

Proof. (i) Let G be the game described in Definition 18, where the challenger picks
Ã←$AFbias (independently of the user’s verification key). Consider the game G0, an
identical copy of game G when b = 0, and consider the game G1, an identical copy
of game G when b = 1. For the first part of the proof the objective is to show that
G0 ≈ G1.

Now consider game G′0 an identical copy of game G0 except that G′0 utilizes the
distribution from Eq. (4.1) instead of the distribution from Eq. (4.2).

Claim 2.1. |P [U wins in G0]− P [U wins in G′0]| ≤ εprf .

Proof. We assume that there exists a user U that distinguishes between games G0
and G′0, and we build a distinguisher D (using U) that breaks the pseudorandomness
of the PRF F . Distinguisher D is described below below.

Distinguisher D:

• Run (VK ,SK )← KGen(1κ), and return (VK ,SK ) to U.
• For each query mi ∈M asked by U, do:

1. Pick a random r←$R and compute xi = Sign(SK ,mi; r)||τ .
2. Forward xi to the target oracle, which answers with yi = f(xi)

if b = 0 or with yi = F (s, xi) if b = 1 (for a hidden bit b).
3. If yi = SK [i], then forward σi = Sign(SK ,mi; r) as an answer

to the query of U, otherwise return to step (1).2

• Output whatever U outputs.

Notice that the probability that D aborts in step (3) of the reduction is the same
probability that in game G0 and G′0 the subverted signing algorithm fails to sample
from the set R̃. It follows that in case b = 0 distinguisher D perfectly emulates the
distribution of G0, whereas in case b = 1 it perfectly emulates the distribution of
G′0. The claim follows.

Claim 2.2. |P [U wins in G′0]− P [U wins in G1]| ≤ q · 2−(ρ+1).

2In case |R| is exponential D simply aborts after polynomially many trials.
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Proof. Abusing notation, let us write G′0 and G1 for the distribution of the random
variables corresponding to U’s view in games G′0 and G1 respectively. For an index
i ∈ [0, q] consider the hybrid game Hi that answers the first i signature queries as
in game G′0 while all the subsequent queries are answered as in G1. We note that
H0 = G1 and Hq = G′0.

We claim that for all i ∈ [q], we have ∆ (Hi−1,Hi) ≤ 2−(ρ+1). To see this, fix
some i ∈ [q] and denote with R (resp. R̃) the random variable defined by sampling
an element from R (resp. R̃) uniformly at random. Clearly,

∆ (Hi−1,Hi) ≤ ∆(R, R̃) = 1
2 ·

∑
r∈R

∣∣∣P [R = r]− P[R̃ = r]
∣∣∣

= 1
2 ·

∑
r∈R

∣∣∣∣∣1ρ − 1− 2−ρ

ρ

∣∣∣∣∣ (4.3)

= 1
2 · 2

−ρ = 2−(ρ+1),

where Eq. (4.3) follows by Lemma 3.
The claim now follows by the triangle inequality, as

∆
(
G1,G′0

)
≤

q∑
i=1

∆ (Hi−1,Hi) ≤ q · 2−(ρ+1).

The two claims above finish the proof of statement (i).
(ii) For the second part of the proof we show that the attack of Fig. 4.1 fails

to recover the secret key with probability at most e1 + e2 + . . . + e`, where ej :=
P
[
SK ′[j] 6= SK [j]

]
. In the analysis, we replace for simplicity the function F with a

truly random function f ; a generalization accounting for the negligible error due to
the use of a pseudorandom function is straightforward. Note that all applications of
f are independent because we append the value τ to each query.

Now if g is injective and f is a random function that outputs one bit, then for
each element r ∈ R we have P [f(g(r)) = SK [j]] = 1/2. Extending to the entire set
R of size ρ we have that

ej := P
[
R̃f,g(SK [j],R) = ∅

]
= 2−ρ,

is the error probability for each bit of the secret key. Therefore the probability of
recovering the key is at least (1− 2−ρ)`.

Notice that for the attack to be undetectable with high probability, the underlying
signature scheme needs to rely on a minimal amount of randomness, say ρ ≥ 27.

Making the attack stateless Note that the attack of Fig. 4.1 requires the
subverted signature algorithm to maintain a state of logarithmic size (the counter
τ). At first sight this might seem a strong assumption, since the original signing
algorithm is typically stateless.
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However, if we assume that the adversary can control the input messages, one
can easily adapt the attack to be completely stateless by letting the input message
play the role of the counter τ . Namely, algorithm Ã interprets the input message
m as an integer i ∈ [`] and proceeds as before. The above adaptation still allows
to recover the signing key and it is undetectable under the strong undetectability
definition put forward by [BJK15].

4.3.2 Attacking Coin-Extractable Schemes

The attack on Section 4.3.1 allows to break all sufficiently randomized schemes. This
leaves the interesting possibility to show a positive result for schemes using less
randomness, e.g., the Katz-Wang signature scheme [KW03] that uses a single bit of
randomness. In this section we present a simple attack (cf. Fig. 4.2) ruling out the
above possibility for all signature schemes that are coin-extractable, a notion which
we define next.

Definition 20 (Coin-extractable). Let SS = (KGen,Sign,Vrfy) be a signature
scheme. We say that SS is νext-coin-extractable if there exists a PPT algorithm
CExt such that for all m ∈M

P
[
σ = Sign(SK ,m; r) : (VK ,SK )← KGen(1κ)

σ = Sign(SK ,m); r ← CExt(VK ,m, σ)

]
≥ 1− νext.

We point that many existing signature schemes are coin-extractable:

• All public-coin signature schemes [Sch12], where the random coins used to
generate a signature are included as part of the signature. Concretely, the
schemes in [GHR99,CS00,NPS01,CL02,Fis03,CL04,BB08,HW09a,HW09b,
HK12], and the Unstructured Rabin-Williams scheme [Ber08], are all public-
coin.

• The Katz-Wang scheme [KW03], where the signature on a message m is
computed as σ = f−1(H(m||r)) such that f is a trapdoor permutation, H is a
hash function, and r is random bit. Given a pair (m,σ) the extractor simply
sets r = 1 iff f(σ) = H(m||1).

• The PSS signature scheme [BR96,Cor02].

Theorem 3. For a randomized, νext-coin-extractable, signature scheme SS with
randomness space R of size ρ = 2d, consider the class of SAs Acext described in
Fig. 4.2. Then,

(i) Acext is secretly (t, q, 0)-undetectable for t, q ∈ N.

(ii) Each Ã ∈ Acext recovers the signing key of the user with probability at least
(1− νext)`/d, where ` is the size of the key.

Proof. (i) Let G be the game described in Definition 18, where the challenger picks
Ã←$Acext uniformly at random (and independently of the user’s verification key).
Consider the game G0, an identical copy of game G when b = 0, and consider the
game G1, an identical copy of game G when b = 1. For the first part of the proof
the objective is to show that G0 ≈ G1.
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SA class Acext

Let SS = (KGen, Sign,Vrfy) be a coin-extractable, randomized signature scheme
with randomness space R of size ρ = 2d. For simplicity assume that d|`, where `
is the size of the signing key (a generalization is straightforward). The class Acext
consists of a set of algorithms {Ãs,τ}s∈{0,1}`,τ=0, where each algorithm in the class
behaves as follows:

Ãs,τ (SK ,m):

• If τ ≥ ` output an honestly generated signature σ := Sign(SK ,m; r).
• Else,

– for each value j ∈ [d] compute the biased random bit r̃[j] :=
s[τ + j]⊕ SK [τ + j];

– return the signature σ := Sign(SK ,m; r̃), and update the state
τ ← τ + d.

Extracting the signing key. Given as input a vector of signatures ~σ =
(σ1, . . . , σ`/d), parse the trapdoor s as `/d chunks of d bits s = {s1, . . . , s`/d}. For
each signature σi ∈ ~σ try to extract the d-bit chunk sk′i of the signing key as follows.

• Extract the randomness from the i-th signature r̃ ←
CExt(VK ,mi, σi).

• For each value j ∈ [d] compute the secret key bit sk′i[j] := r̃[j]⊕si[j].

Return the signing key SK ′ := (SK ′i, . . . ,SK ′`/d).
Figure 4.2. Attacking coin-extractable schemes

Claim 3.1. |P [U wins in G0]− P [U wins in G1]| = 0.

Proof. Abusing notation, let us write G0 and G1 for the distribution of the random
variables corresponding to U’s view in games G0 and G1 respectively. For an index
i ∈ [0, q] consider the hybrid game Hi that answers the first i signature queries as
in game G0 while all the subsequent queries are answered as in G1. We note that
H0 ≡ G1 and Hq ≡ G0.

We claim that for all i ∈ [q], we have Hi−1 ≡ Hi. To see this, fix some i ∈ [q] and
denote with R (resp. R̃) the random variable defined by sampling an element from
R (resp. R̃) uniformly at random. It is easy to see that R and R̃ are identically
distributed, as the biased distribution consists of a one-time pad encryption of (part
of) the signing key with a uniform key. The claim follows.

(ii) For the second part of the proof we note that the attack of Fig. 4.2 successfully
recovers the biased randomness r̃ of each σi ∈ {σ1, . . . , σ`/d} and computes the chunk
ski of the signing key with probability at least 1−νext. This gives a total probability
of recovering the entire signing key of at least (1− νext)`/d.
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4.4 The Multi-User Setting
In this section we consider the multi-user setting for the undetectability definition.
We also provide a complete picture of relationships between the definition, as shown
Fig. 4.3.

4.4.1 Multi-User Public/Secret Undetectability

In the undetectability definition for the multi-user setting user U now receives u ≥ 1
key pairs from the challenger (only the verification keys for public undetectability)
and is allowed to make polynomially many signature queries for all users (key pairs).
The answer to these queries are either computed using the real signature algorithm
or a subverted algorithm previously chosen by the challenger possibly depending on
the verification keys of the users. A formal definition follows.

Definition 21 (Public/Secret Undetectability—Multi-User). Let SS = (KGen,Sign,
Vrfy) be a signature scheme, and A be some class of SAs for SS. We say that A is u-
users secretly undetectable w.r.t. SS if for all PPT users U, there exists a negligible
function ν : N→ [0, 1] and an efficient challenger such that

∣∣∣P [U wins]− 1
2

∣∣∣ ≤ ν(κ)
in the following game:

1. The challenger samples b←$ {0, 1}, generates (VK i,SK i) ← KGen(1κ) for
i ∈ [u], chooses Ã ← A (possibly depending on VK 1, . . . ,VKu), and gives
(VK 1,SK 1, . . . ,VKu,SKu) to B.

2. The user U can ask polynomially many queries of the form (i,m), where
i ∈ [u] and m ∈M. The answer to each query depends on the secret bit b. In
particular, if b = 1, the challenger returns σ ← Sign(SK i,m); if b = 0, the
challenger returns σ̃ ← Ã(SK i,m).

3. Finally, U outputs a value b′ ∈ {0, 1}; we say that U wins iff b′ = b.

We say that A is u-users publicly undetectable w.r.t. SS if in step 1. of the
above game, U is only given the verification keys of the u-users.

4.4.2 Undetectability Relations

The following theorem (4) formalizes the relations depicted in Fig. 4.3.

Theorem 4. Let SS be a signature scheme. The following relations hold.

1. For all SA classes A against SS, if A is u-sUND then A is also u-pUND.

Proof. Let C∗ be the (efficient) challenger that exists by the assumption that
A is secretly undetectable. We claim that A is also publicly undetectable for
the same choice of the challenger C∗. Towards contradiction, consider a user U
that wins the public undetectability game described in Definition 21 against
C∗. We build a user U′ (using U) that wins the secret undetectability game
described in Definition 21 against C∗.
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1-pUND

u-pUND

1-sUND

u-sUND

Figure 4.3. Diagram of the relationships between the undetectability notions considered
in this paper. X → Y means that X implies Y ; X 9 Y indicates a separation between
X and Y . The lighter arrows indicates trivial implications (or implications that follow
from Theorem 4). Public undetectability (Definition 21) is represented by u-pUND and
the secret undetectability (Definition 21) is represented by u-sUND.

User U′:
(a) Receive (VK i,SK i)← KGen(1κ), for i ∈ [u], from the challenger

C∗ and forward it to user U.
(b) User U asks polynomially many queries of the type (i,m) which

are forwarded to the challenger C∗.
(c) Output whatever U outputs.

We note that the simulation performed by user U′ is perfect, therefore U′ wins
the secret undetectability game with the same probability that user U wins
the public undetectability game.

2. There exist a SA class A against SS, such that A is 1-pUND but A is not
1-sUND.

Proof. Consider SS to be a randomized signature scheme (with only two
valid signatures for each message m ∈M), and let SS ′ be its derandomized
implementation s.t. SK ′ := (SK , s), VK ′ := VK , and σ′ := Sign(SK ,m; r′)
with r′ := F ′s(m) for the PRF F ′ : {0, 1}κ × {0, 1}∗ → {0, 1} that outputs a
single bit. For concreteness, one can think of SS ′ as the Katz-Wang signature
scheme [KW03]. Let A = {Ã} be the class of SAs for SS ′ described next.

Ã(SK ,m):
(a) Upon signature of message m, compute r′ := F ′s(m) and set

r′′ := r̄′ (complement bit of r′).
(b) Output σ ← Sign(SK ,m; r′′).

Every signature generated by Ã verifies correctly3, therefore, a user U has only
a negligible probability of winning at the public undetectability game described
in Definition 18. On the other hand, a user U playing the secret undetectability
game (has knowledge of SK ′) can easily detect the subversion of Ã ∈ A by
simply recomputing r := Fs(m) and signing the message σ ← Sign(SK ,m; r).

3This follows by the correcteness of SS ′.
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A simple comparison can tell if the oracle is the original signing algorithm or
the subversion.

3. There exist a SA class A against SS, such that A is 1-pUND but A is not
u-pUND.

Proof. Consider SS to be a contrived signature scheme such that the signature
of a message m ∈ M is σ = Sign(SK ,m; r)||r, where r←$ {0, 1}κ. Let A =
{Ãτ,r̄}τ=0,r̄∈{0,1}κ to be class of SAs for SS described next.

Ãτ,r̄(SK ,m):
(a) If τ = 0 then let r := r̄, else let r←$ {0, 1}κ.
(b) Output σ ← Sign(SK ,m; r)||r and update τ = τ + 1.

Clearly, the class A is publicly undetectable for a single user because the
output of the subverted signature algorithm is indistinguishable from that of
the real signing algorithm, even for the first query (when τ = 0). However, the
class A is clearly 2-users publicly detectable since (no matter the strategy of
the challenger) it suffices to ask one query for each user and compare the last κ
bits of the signatures to distinguish between real and subverted signatures.

4. There exist a SA class A against SS, such that A is 1-sUND but A is not
u-sUND.

Proof. Consider SS to be a randomized, coin-extractable signature scheme,
with randomness size of `-bits, where ` = |SK |, and Acext to be the class
of SAs for SS described in Fig. 4.2. We already showed in Theorem 3 that
(for the challenger C∗ that chooses Ã at random from Acext) any PPT user
U playing the secret undetectability game described in Definition 18 has a
negligible advantage. Now consider the same user U playing the 2-users secret
undetectability game described in Definition 21; user U now has 2 key pairs
that can be used to detect the attack in the following way.

User U:
(a) Receive (VK i,SK i)← KGen(1κ), for i = 1, 2.
(b) Fix a message m̄ ∈ M and query (1, m̄) and (2, m̄) to the

challenger, that replies with σ1 and σ2.
(c) Use CExt to extract the randomness from σ1 and σ2 to get

r1 ← CExt(VK 1, m̄, σ1) and r2 ← CExt(VK 2, m̄, σ2).
(d) Compute SK 1 ⊕ SK 2 and return 0 iff the result equals r1 ⊕ r2.

We note that the above detection strategy works regardless what strategy the
challenger uses to select an algorithm from the class Acext. We conclude that
user U has an overwhelming probability of distinguishing between real and
subverted signatures.
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4.4.3 Mounting Multi-User SAs

In this section we extend the attacks of Fig. 4.1 and Fig. 4.2 to the multi-user setting.

Attacking Coin-Injective Schemes (Multi-User Version)

The attack described in Fig. 4.1 can be extended to the multi-user setting with
minor modifications. We create an SA class AF,ubias from the class AFbias of Fig. 4.1
by just appending the index j, that represents each user, to the function g(·) =
Sign(SK j ,m)||τ ||j, so that each application of the random function f(g(·)) remains
independent.

The two lemmas below (Lemma 4 and Lemma 5) are needed for the proof of
undetectability in the multi-user setting. The two lemmas combined roughly state
that the statistical distance of a joint distribution of u random variables is at most
u times the statistical distance of each pair of the random variables.

Lemma 4 ( [Rey11]). Let X and Y be two random variables over some finite
domain, and let G be a randomized function. Then ∆ (G(X), G(Y)) ≤ ∆ (X,Y).

Lemma 5. Let X and Y be two random variables over some finite domain, and let
(X1, . . . ,Xu) and (Y1, . . . ,Yu) be u independent copies of the random variables X
and Y. Then

∆ ((X1, . . . ,Xu), (Y1, . . . ,Yu)) ≤ u ·∆ (X,Y) .

Proof. We prove this lemma by induction. First we consider the basis case where
i = 1, which trivially holds as ∆ (X1,Y1) ≤ ∆ (X,Y).

For the induction step we define the random functions G1(·) = (X1, . . . ,Xi−1, ·)
and G2(·) = (·,Yi). We assume that the statement holds up to i−1 random variables
and then we proceed to show that it also holds for i random variables.

∆ ((X1, . . . ,Xi), (Y1, . . . ,Yi))
≤ ∆ ((X1, . . . ,Xi), (X1, . . . ,Xi−1,Yi)) + ∆ ((X1, . . . ,Xi−1,Yi), (Y1, . . . ,Yi))
= ∆ (G1(Xi), G1(Yi)) + ∆ (G2(X1, . . . ,Xi−1), G2(Y1, . . . ,Yi−1))
≤ ∆ (X,Y) + ∆ ((X1, . . . ,Xi−1), (Y, . . . ,Yi−1))
≤ i ·∆ (X,Y) ,

where the first inequality follows by the triangle inequality, the second inequality
follows by Lemma 4, and the third inequality follows by the induction hypothesis.

The theorem below quantifies the effectiveness of the attack of Fig. 4.1 in the
multi-user setting.

Theorem 5. Let F : {0, 1}κ × {0, 1}∗ → {0, 1} be a secure PRF. For a randomized,
coin-injective signature scheme SS with randomness space of size ρ = |R|, consider
the class of SAs AF,ubias described above. Then,

(i) AF,ubias is u-users secretly undetectable.
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(ii) Each Ã ∈ AF,ubias recovers the signing key of any of the users with probability at
least (1− (1/2 + εprf)ρ)`, where ` is the size of the signing key.

Proof. (i) Let G be the game described in Definition 21. Consider the game G0, an
identical copy of game G when b = 0, and consider the game G1, an identical copy
of game G when b = 1. For the first part of the proof the objective is to show that
G0 ≈ G1.

Now consider game G′0 an identical copy of game G0 except that G′0 utilizes the
distribution from the random function f (analogous to Eq. (4.1) in the single user
attack) instead of the distribution from the PRF F (analogous to Eq. (4.2) in the
single user attack).

Claim 5.1. |P [U wins in G0]− P [U wins in G′0]| ≤ ν(κ).

The above claim follows by a standard reduction argument to the hardness of
the PRF F to distinguishing games G0 and G′0. The proof is similar to the one in
Theorem 2 and is therefore ommited.

Claim 5.2. |P [U wins in G′0]− P [U wins in G1]| ≤ ν(κ).

Proof. Abusing notation, let us write G′0 and G1 for the distribution of the random
variables corresponding to U’s view in games G′0 and G1 respectively. For an index
i ∈ [0, q] consider the hybrid game Hi that answers the first i signature queries as
in game G′0 while all the subsequent queries are answered as in G1. We note that
H0 = G1 and Hq = G′0.

We claim that for all i ∈ [q], we have ∆ (Hi−1,Hi) ≤ 2−(ρ+1). To see this, fix
some i ∈ [q] and denote with R1, . . . ,Ru (resp. R̃1, . . . , R̃u) the random variables
defined by sampling an element from R (resp. R̃) uniformly at random. Clearly,

∆ (Hi−1,Hi) ≤ ∆((R1, . . . ,Ru), (R̃1, . . . , R̃u))
≤ u ·∆(R, R̃) (4.4)
= u · 2−(ρ+1), (4.5)

where Eq. (4.4) follows by Lemma 5 and Eq. (4.5) follows by Eq. (4.3).
The claim now follows by the triangle inequality, as

∆
(
G1,G′0

)
≤

q∑
i=1

∆ (Hi−1,Hi) ≤ qu · 2−(ρ+1)

and the last term becomes negligible for u, q = poly(κ) and for ρ large enough.

The two claims above finish the proof of statement (i).

(ii) For the second part of the proof we proceed as in Theorem 2. We note that
the specified class of SAs AF,ubias maintains each application of the random function f
independent by appending the index j, that represents each user, to the function g,
obtaining g(·) = Sign(SK j ,m)||τ ||j. The statement follows.
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Attacking Coin-Extractable Schemes (Multi-User Version)

The attack against coin-extractable schemes described in Fig. 4.2 becomes easily
detectable in the presence of two or more users (see the proof of Theorem 4, item
(iv)). An easy solution is to modify the SA class such that each algorithm in the
class uses a different one-time pad key for each target user. We describe this class of
SAs in Fig 4.4.

SA class Aucext

Let SS = (KGen,Sign,Vrfy) be a coin-extractable randomized signature scheme with
randomness space R of size ρ = 2d. The class Aucext consists of a set of algorithms
{Ã

~s, ~VK ,~τ}~s∈{0,1}`·u, ~VK∈VKu,~τ=0u , where ` = |SK |, and where each algorithm in the
class behaves as follows:

Ã
~s, ~VK ,~τ (SK i,m):

• Parse~s as (s1, . . . , su), ~VK as (VK 1, . . . ,VKu), and ~τ as (τ1, . . . , τu).
• Find the index i such that Vrfy(VK i,m,Sign(SK i,m)) = 1.
• If τi ≥ ` output a real signature σ ← Sign(SK i,m).
• Else,

– For each value j ∈ [d] compute the biased random bit r̃[j] =
si[τi + j]⊕ SK i[τi + j].

– Return the signature σ := Sign(SK i,m; r̃), and update the
state τi ← τi + d.

Extracting the signing key. Given as input a vector of signatures ~σ =
(σ1, ..., σ`/d) of user i, represent the trapdoor si as `/d chunks of d bits si =
{si,1, . . . , si,`/d}. For each signature σk ∈ ~σ try to extract the d-bit chunk sk′i,k
of the signing key as follows.

• Extract the randomness from the k-th signature r̃ ←
CExt(VK i,mk, σk).

• For each value j ∈ [d] compute the secret key bit sk′i,k[j] = r̃[j]⊕
si,k[j].

Return the signing key SK ′i := (SK ′i,k, . . . ,SK ′i,`/d).
Figure 4.4. Attacking coin-extractable schemes in the multi-user setting

Theorem 6. For a randomized, νext-coin-extractable, signature scheme SS with
randomness space R of size ρ = 2d, consider the class of SAs Aucext described in
Fig. 4.4. Then,

(i) Aucext is u-users secretly undetectable.

(ii) Each Ã ∈ Aucext recovers the signing key of any of the users with probability at
least (1− νext)`/d.
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Proof. (i) Let G be the game described in Definition 21, where the challenger first
generates all key pairs (VK i,SK i) (for i ∈ [u]) and afterwards selects the algorithm
Ã← Aucext such that ~VK := (VK 1, . . . ,VKu). Consider the game G0, an identical
copy of game G when b = 0, and consider the game G1, an identical copy of game
G when b = 1. For the first part of the proof the objective is to show that G0 ≈ G1.

Claim 6.1. G0 ≡ G1.

Proof. Abusing notation, let us write G0 and G1 for the distribution of the random
variables corresponding to U’s view in games G0 and G1 respectively. For an index
i ∈ [0, q] consider the hybrid game Hi that answers the first i signature queries as
in game G0 while all the subsequent queries are answered as in G1. We note that
H0 ≡ G1 and Hq ≡ G0.

We claim that for all i ∈ [q], we have Hi−1 ≡ Hi. To see this, fix some i ∈ [q]
and denote with R1, . . . ,Ru the random variables defined by sampling an element
from R uniformly at random and with R̃1, . . . , R̃u the random variables defined by
sampling an element from the biased distribution R̃ also uniformly at random. It
is easy to see that Ri and R̃i, for i ∈ [q], are identically distributed, as the biased
distribution consists of a one-time pad encryption of (part of) the signing key with
a uniform key (a different key for each user). The claim follows.

(ii) For the second part of the proof we note that the attack of Fig. 4.4 successfully
recovers the biased randomness r̃ of each σi ∈ {σ1, . . . , σ`/d} and computes the chunk
skj,i of the signing key of a user j with probability at least 1− νext. This gives a
total probability of recovering an entire signing key of at least (1− νext)`/d.
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The (not so) Ugly

In this chapter we cover immunization techniques against malicious backdoors.
We focus on two scenarios for immunization; the first is the security of signature
schemes against subversion attacks.1 In that direction we give security definitions
for signature schemes under the subversion attack model and in Section 5.1 we
show that unique signature schemes are secure against all subversion attacks that
conforms to a basic form of undetectability. In Section 5.2 we present a secure
solution for any re-randomizable signature scheme (of which unique signatures are
a special case) against all subversion attacks by using an un-tamperable hardware
device, called Cryptographic Reverse Firewall [MS15]. Later, in Section 5.1.5 we
extend our definitions to the multi-user scenario, and we show all the relations
among the different security definitions. Lastly, in Section 5.1.6 we present the first
efficient unique signature scheme with a tight security proof based on a standard
cryptographic assumption, namely the Quadratic Residuosity assumption.

The second scenario of immunization techniques that we cover is concerned with
cryptographic circuits. In Section 5.3.1, we propose a new approach to the untrusted
circuit fabrication problem. We assume that the circuit specification and design are
trusted but the fabrication facility is not. This leaves the possibility of a malicious
foundry to inject malicious circuit in the design before building the circuit. Rather
than testing or reverse engineering the circuit hardware received, we employ it in
a controlled environment and continuously verify its operations. The idea is to
compile the circuit design before the production phase in a way that the malicious
circuit inserted by the foundry is not able to cause any harm to the operations of
the compiled circuit. We introduce three compilers; two are based on techniques
of verifiable computation (Section 5.3.2) and the last one is based on multiparty
computation (Section 5.3.3).

1Subversion attacks are a generalization of backdoor attacks, therefore they are even more
powerful.
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5.1 Security of Unique Signatures
In this section we give security definitions for signature schemes against subversion
attacks (SAs) and we prove that signature schemes with unique signatures are
subversion-resilient against SAs that meet a basic undetectability requirement, which
we call the verifiability condition.

5.1.1 Impersonation

We consider two security definitions, corresponding to different adversarial goals.

Indistinguishability. In the first definition, it is required that an adversary B
having access to polynomially many subversion oracles chosen adaptively (possibly
depending on the user’s verification key), cannot distinguish signatures produced
via the standard signing algorithm from subverted signatures.

Definition 22 (Indistinguishability against SAs). Let SS = (KGen, Sign,Vrfy) be a
signature scheme, and A be some class of SAs for SS. We say that SS is (t, n, q, ε)-
indistinguishable w.r.t continuous A-SAs if for all PPT adversaries B running in
time t, we have

∣∣∣P [B wins]− 1
2

∣∣∣ ≤ ε(κ) in the following game:

1. The challenger runs (VK ,SK) ← KGen(1κ), samples b←$ {0, 1}, and gives
VK to B.

2. The adversary B can ask the following two types of queries; the queries can be
specified adaptively and in an arbitrary order:

• Choose an algorithm Ãj ∈ A, for j ∈ [n], and give it to the challenger.
• Forward a pair (j,mi,j) to the challenger, where i ∈ [q] and j ∈ [n].

The answer to each query depends on the value of the secret bit b. In
particular, if b = 1, the output is σi,j ← Sign(SK ,mi,j); if b = 0, the
output is σ̃i,j ← Ãj(SK ,mi,j).

3. Finally, B outputs a value b′ ∈ {0, 1}; we say that B wins iff b′ = b.

Whenever ε(κ) = negl(κ), q = poly(κ), and n = poly(κ) we simply say that SS is
indistinguishable against continuous A-SAs.

Impersonation under chosen-message attacks. We also consider an alterna-
tive (strictly weaker—cf. Section 5.1.5) definition, where the goal of the adversary is
now to forge a signature on a “fresh” message (not asked to any of the oracles).

Definition 23 (EUF-CMA against SAs). Let SS = (KGen,Sign,Vrfy) be a signature
scheme, and A be some class of SAs for SS. We say that SS is (t, n, q, ε)-EUF-CMA
w.r.t. continuous A-SAs if for all PPT adversaries B running in time t, we have
P [B wins] ≤ ε(κ) in the following game:

1. The challenger runs (VK ,SK )← KGen(1κ), and gives VK to B.
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2. The adversary B is given oracle access to Sign(SK , ·). Upon input the i-th
query mi, this oracle returns σi ← Sign(SK ,mi); let Q = {m1, . . . ,mq} be the
set of all queried messages.

3. For each j ∈ [n], the adversary B can adaptively choose an algorithm Ãj ∈ A.
For each algorithm, B is given oracle access to Ãj(SK , ·). Upon input a message
m̃i,j, the oracle returns σ̃i,j ← Ãj(SK , m̃i,j); let Q̃j = {m̃1,j , . . . , m̃q,j} be the
set of all queried messages to the oracle Ãj.

4. Finally, B outputs a pair (m∗, σ∗); we say that B wins iff Vrfy(VK , (m∗, σ∗)) =
1 and m∗ 6∈ Q ∪ Q̃, where Q̃ :=

⋃n
j=1 Q̃j.

Whenever ε(κ) = negl(κ), q = poly(κ), and n = poly(κ) we simply say that SS is
EUF-CMA against continuous A-SAs.

Remarks. Some remarks on the above definitions are in order.

• First, note that it is impossible to prove that a signature scheme SS satisfies
Definition 22 (and consequently Definition 23) for an arbitrary class A, without
making further assumptions.2 To see this, consider the simple algorithm that
ignores all inputs and outputs the secret key.3

• We observe that continuous A-SAs security, implies security against continuous
tampering attacks with the secret key. This can be seen by considering a class
of algorithms Akey = {Ãf}f∈F , where F is a class of functions such that each
f ∈ F has a type f : SK → SK, and for all f ∈ F , m ∈ M and r ∈ R we
have that Ãf (·,m; r) := Sign(f(·),m; r).4

• It is useful to compare Definition 22 to the security definition against algorithm-
substitution attacks given in [BPR14] (for the case of symmetric encryption).
In the language of Bellare et al. [BPR14], a subversion of a signature scheme
would be a triple of algorithms S̃S = (K̃Gen, S̃ign, Ṽrfy), where in the security
game K̃Gen is run by the challenger in order to obtain a trapdoor α ∈ {0, 1}∗
and some initial state τ ∈ {0, 1}∗ which are both hard-wired in the algorithm
S̃ign := S̃ignα,τ (and given to B).5

The above setting can be cast in our framework by considering the class of SAs
ABRP14 := {Ãα,τ : (α, τ)← K̃Gen(1κ)}, and by setting n = 1 in Definition 22.

2Looking ahead, one of our positive results achieves security w.r.t. arbitrary SAs assuming the
existence of a cryptographic reverse firewall. See Section 5.2.

3In case the secret key is too long, one can make the algorithm stateful so that it outputs
a different chunk of the key at each invocation. Alternatively, consider the class of algorithms
{Ãm̄}m̄∈M that always outputs a signature σ̄ on m̄; obviously this subversion allows to forge on m̄
without explicitly querying the message to any of the oracles.

4It is worth noting that already for n = 1 Definition 23 implies non-adaptive key tampering, as
the subverted algorithm can hard-wire (the description of) polynomially many pre-set tampering
functions.

5The algorithm Ṽrfy is not explicitly part of the definitions in [BPR14]—in fact, a secure scheme
implicitly excludes that any Ṽrfy algorithm exists—and can be considered as part of the adversary
itself.
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Our definition is more general, as it accounts for arbitrary classes of SAs
and moreover allows B to subvert a user’s algorithm continuously and in a
fully-adaptive fashion (possibly depending on the target verification key).

Multi-user setting. For simplicity Definition 22 and 23 consider a single user.
We provide an extension to the more general setting with u ≥ 2 users, together with
a complete picture of the relationships between the different notions, in Section 5.1.5.

The Verifiability Condition

We say that A meets the verifiability condition relative to SS if for all Ã ∈ A and
for all m ∈ M the signatures produced using the subverted signing algorithm Ã
(almost) always verify under the corresponding verification key VK .

Definition 24 (Verifiability). Let A be some class of SAs for a signature scheme
SS. We say that A satisfies νv-verifiability if for all Ã ∈ A and for all m ∈M

P
[
Vrfy(VK , (m, Ã(SK ,m))) = 1 : (VK ,SK )← KGen(1κ)

]
≥ 1− νv,

where the probability is taken over the randomness of all involved algorithms.

Public undetectability vs. verifiability. One might think that verifiability is
a special case of public undetectability (Definition 18). However, this is not true and
in fact Definition 24 and 18 are incomparable. To see this, consider the class of SAs
Amsg = {Ãm̄}m̄∈M that behaves identically to the original signing algorithm, except
that upon input m̄ ∈ M it outputs an invalid signature.6 Clearly, Amsg satisfies
public undetectability as a user has only a negligible chance of hitting the value m̄;
yet Amsg does not meet the verifiability condition as the latter is a property that
must hold for all messages.

On the other hand, consider the class of SAs Adet that is identical to the origi-
nal signing algorithm, except that it behaves deterministically on repeated inputs.
Clearly, Adet meets the verifiability condition relative to any (even randomized)
signature scheme SS; yet Adet does not satisfy public undetectability for any ran-
domized signature scheme SS, as a user can simply query the same message twice
in order to guess the value of the hidden bit b with overwhelming probability.

Relaxed verifiability. Clearly, the assumption that the verifiability condition
should hold for all values m ∈ M is quite a strong one. A natural relaxation is
to require that the probability in Definition 24 is taken also over the choice of the
message.

Definition 25 (Relaxed Verifiability). Let A be some class of SAs for a signature
scheme SS. We say that A satisfies relaxed νv-verifiability if for all Ã ∈ A

P
[
Vrfy(VK , (m, Ã(SK ,m))) = 1 : (VK ,SK )← KGen(1κ);m←$M

]
≥ 1− νv,

6A similar class of attacks—under the name of input-triggered subversion—has been recently
considered in [DFP15] for the case of symmetric encryption.
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where the probability is taken over the choice of the message and over the randomness
of all involved algorithms.

We argue that relaxed verifiability is implied by public undetectability (cf.
Definition 18) in many interesting cases.

• Input-triggered subversions. Whenever public undetectability holds for all
algorithms in the class A. This is the case, for instance, for the class Amsg of
input-triggered subversions described above.
To see this, let A be a class of SAs that is publicly undetectable for all Ã ∈ A.
Towards a contradiction, assume that A does not satisfy relaxed verifiability.
This means that there exists an Ã ∈ A and a polynomial p(·) such that

P
[
Vrfy(VK , (m, Ã(SK ,m))) = 0 : (VK ,SK )← KGen(1κ);m←$M

]
≥ 1
p(κ) ,

for infinitely many values of κ ∈ N. It follows that Ã can be used to break
public undetectability with probability 1/p(κ), by simply signing a random
message and trying to verify the outcome.

• Backdoored implementations. The above implication also holds for the class
ABPR14 of algorithm-substitution attacks and backdoored implementations
(see paragraph “Remarks” in Section 5.1.1), as long as the winning condition
in Definition 18 and Definition 25 is taken also over the choice of the backdoor
(i.e., over the random coins of algorithm K̃Gen).

5.1.2 Security Against Chosen-Message Attacks

The theorem below shows that unique signature schemes (cf. Definition 6) achieve
indistinguishability (and thus EUF-CMA) against the class of all SAs that meet the
verifiability condition (cf. Definition 24).

Theorem 7. Let SS = (KGen,Sign,Vrfy) be a signature scheme with νc-correctness
and νu-uniqueness, and denote by Aνvver the class of all algorithms that satisfy νv-
verifiability relative to SS. Then SS is (t, n, q, ε)-indistinguishable against continuous
Aνvver-SAs, for all n, q ∈ N and for ε ≤ qn · (νc + νv + νu).

Proof. Let G be the game described in Definition 22. Consider the game G0, an
identical copy of game G when b = 0, and consider the game G1, an identical copy
of game G when b = 1. The objective here is to show that G0 ≈ G1.

For an index k ∈ [0, n], consider the hybrid game Hk that answers each query
(j,mi,j) such that j ≤ k as in game G0 (i.e., by running Sign(SK ,mi,j)), while all
queries (j,mi,j) such that j > k are answered as in G1 (i.e., by running Ãj(SK ,mi,j)).
We note that H0 ≡ G1 and Hn ≡ G0. Abusing notation, let us write Gk for the
distribution of the random variable corresponding to B’s view in games Gk.

Fix a particular k ∈ [0, n], and for an index l ∈ [0, q] consider the hybrid game
Hk,l that is identical to Hk except that queries (k,mi,k) with i ≤ l are treated as
in game G0, while queries (k,mi,k) with i > l are treated as in G1. Observe that
Hk,0 ≡ Hk−1, and Hk,q ≡ Hk.
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Claim 7.1. Fix some k ∈ [0, n]. For each l ∈ [0, q], we have ∆ (Hk,l−1,Hk,l) ≤
νc + νv + νu.

Proof. Notice that the only difference between Hk,l−1 and Hk,l is how the two games
answer the query (k,ml,k): Game Hk,l−1 returns σl,k ← Sign(SK ,ml,k), whereas
game Hk,l returns σ̃l,k ← Ãk(SK ,ml,k). Now let El,k be the event that σl,k 6= σ̃l,k.
We can write

∆ (Hk,l−1,Hk,l) ≤ ∆ (Hk,l−1; Hk,l|¬El,k) + P [El,k] (5.1)
≤ νc + νu + νv. (5.2)

Eq. (5.1) follows by Lemma 1 and Eq. (5.2) follows by the fact that Hk,l−1 and
Hk,l are identically distributed conditioned on El,k not happening, and moreover
P [El,k] ≤ νc + νu + νv. The latter can also be seen as follows. By the correctness
condition of SS we have that σl,k is valid for ml,k under VK except with probability
at most νc. By the assumption that Ãk ∈ Aνvver we have that σ̃l,k is also valid for ml,k

under VK except with probability at most νv. Finally, by the uniqueness property
of SS we have that σl,k and σ̃l,k must be equal except with probability at most νu.
It follows that P [El,k] ≤ νc + νu + νv, as desired.

The statement now follows by the above claim and by the triangle inequality, as

∆ (G0,G1) ≤
n∑
k=1

∆ (Hk−1,Hk) ≤
n∑
k=1

q∑
l=1

∆ (Hk,l−1,Hk,l) ≤ qn · (νc + νu + νv).

Unfortunately, unique signatures do not satisfy EUF-CMA against the class of
all SAs that satisfy relaxed verifiability (cf. Definition 25). In fact, it is not hard
to show that no signature scheme with large enough message space (no matter if
randomized or deterministic) can achieve EUF-CMA against such class of SAs.

This can be seen by looking again at the class of SAs Amsg = {Ãm̄}m̄∈M that
behaves identically to the original signing algorithm, except that upon input m̄ ∈M
it outputs the secret key. Clearly, Amsg satisfies relaxed verifiability as a randomly
chosen message will be different from m̄ with high probability and the user has
only a negligible chance of hitting the value m̄; yet Amsg clearly allows to break
EUF-CMA for an adversary knowing m̄.

5.1.3 Security Against Random-Message Attacks

We show that if we restrict to the case of random-message attacks (RMA), i.e. the
adversary can only see signatures of randomly chosen messages, unique signatures
achieve unforgeability against the class of SAs that meets relaxed verifiability (cf.
Definition 25).

Definition 26 (EUF-RMA against SAs). Let SS = (KGen,Sign,Vrfy) be a signature
scheme, and A be some class of SAs for SS. We say that SS is (t, n, q, ε)-EUF-RMA
w.r.t. continuous A-SAs if for all PPT adversaries B running in time t, we have
P [B wins] ≤ ε(κ) in the game of Definition 23 with the adaptation that the messages
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in the sets Q, Q̃1, . . . , Q̃n are drawn uniformly at random from the message space
M.

While the above definition might seem a weak guarantee, it is still useful for
applications. In particular, in Section 5.1.4 we show how to use any signature scheme
that is EUF-RMA against a given class of SAs, to construct an identification scheme
that is subversion-resilient against the same class of SAs.

Theorem 8. Let SS = (KGen, Sign,Vrfy) be a (t, (q+ 1) ·n, ε)-EUF-CMA signature
scheme with νc-correctness and νu-uniqueness, and denote by Aνvr_ver the class of all
algorithms that satisfy relaxed νv-verifiability relative to SS. Then SS is (t′, n, q, ε′)-
indistinguishable against continuous Aνvrel_ver-SAs, for t′ ≈ t, for all n, q ∈ N, and for
ε′ ≤ ε+ qn · (νc + νv + νu).

Proof. Let G be the game of Definition 26. Consider the modified game H that is
identical to G except that queries to the subverted signing algorithms are answered
as described below:

• For all i ∈ [q], j ∈ [n], sample m̃i,j ←$M and return σi,j ← Sign(SK , m̃i,j).

Claim 8.1. |P [B wins in G]− P [B wins in H]| ≤ qn · (νc + νv + νu).

Proof. For an index k ∈ [0, n], consider the hybrid game Hk that answers each query
to the j-th subversion oracle, such that j ≤ k, as in game G, while all queries with
j > k are answered as in H. We note that H0 ≡ H and Hn ≡ G. Abusing notation,
let us write Hk for the distribution of the random variable corresponding to B’s view
in game Hk.

We will show that ∆ (Hk−1,Hk) ≤ q · (νc + νv + νu) for all k. Fix a particular
k ∈ [0, n], and for an index l ∈ [0, q] consider the hybrid game Hk,l that is identical
to Hk except that it answers queries (k, i) with i ≤ l as in game G, while all queries
(k, i) with i > l are treated as in H. Observe that Hk,0 ≡ Hk−1, and Hk,q ≡ Hk.

We now argue that for each l ∈ [q], one has that SD(Hk,l−1,Hk,l) ≤ νc + νv + νu.
Notice that the only difference between Hk,l−1 and Hk,l is how the two games answer
the query (k, l): Game Hk,l−1 returns σl,k ← Sign(SK , m̃l,k), whereas game Hk,l

returns σ̃l,k ← Ãk(SK , m̃l,k) (where m̃l,k←$M). Now let El,k be the event that
σl,k 6= σ̃l,k. We can write

∆ (Hk,l−1,Hk,l) ≤ ∆ (Hk,l−1; Hk,l|¬El,k) + P [El,k] (5.3)
≤ νc + νu + νv. (5.4)

Eq. (5.3) follows by Lemma 1 and Eq. (5.4) follows by the fact that Hk,l−1 and
Hk,l are identically distributed conditioned on El,k not happening, and moreover
P [El,k] ≤ νc + νu + νv. The latter can also be seen as follows. By the correctness
condition of SS we have that σl,k is valid for m̃l,k under VK except with probability
at most νc. By the assumption that Ãk ∈ Aνvr_ver we have that σ̃l,k is also valid for
m̃l,k under VK except with probability at most νv (this is because m̃l,k is chosen at
random). Finally, by the uniqueness property of SS we have that σl,k and σ̃l,k must
be equal except with probability at most νu. It follows that P [El,k] ≤ νc + νu + νv,
as desired.
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The claim now follows by the above argument and by the triangle inequality, as

∆ (G,H) ≤
n∑
k=1

∆ (Hk−1,Hk)

≤
n∑
k=1

q∑
l=1

∆ (Hk,l−1,Hk,l)

≤ qn · (νc + νv + νu).

Claim 8.2. P [B wins in H] ≤ ε.

Proof. Towards a contradiction, assume B wins in game H with probability larger
than qn · ε. We build an adversary B′ (using B) that breaks EUF-CMA of SS.
Adversary B′ is described below.

Adversary B′:

• Receive the verification key VK from the challenger, and return
VK to B.

• Upon input the i-th signature query, query the target oracle receiving
back a signature σi ← Sign(SK ,mi) for mi←$M. Return σi to B.

• Upon input a query of the form (j, i), query the target oracle
receiving back a signature σi,j ← Sign(SK , m̃i,j) for m̃i,j ←$M.
Return σi,j to B.

• Whenever B outputs (m∗, σ∗), output (m∗, σ∗).

For the analysis, note that B′ runs in time similar to that of B and asks a total
of at most q + qn signing queries. Moreover, the simulation is perfect and thus
P [B′ wins] ≥ ε, a contradiction.

The proof follows by combining the above two claims.

5.1.4 Subversion-Resilient Identification Schemes

We show how to apply EUF-RMA against SAs to the setting of subversion-resilient
identification (ID) schemes. Similar applications already appeared in the literature
for leakage and tamper resistance [ADW09,FHN+12,DFMV13,NVZ14,FNV15].

In a public-key ID scheme a prover with secret key SK attempts to prove its
identity to a verifier holding the corresponding verification key VK . More formally,
an ID scheme ID = (Setup,KGen,P,V) consists of four PPT algorithms described
as follows: (1) The parameters generation algorithm takes as input the security
parameter and outputs public parameters params← Setup(1κ), shared by all users.7
(2) The key generation algorithm takes as input the security parameter and outputs a
verification key/secret key pair (VK ,SK )← KGen(1κ). (3) P and V are probabilistic

7In what follows all algorithms take as input params, but we omit to explicitly write this for ease
of notation.
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Turing machines interacting in a protocol; at the end of the execution V outputs
a decision bit d ∈ {0, 1}, where d = 1 means that the identification was successful.
We write 〈P(SK),V(VK)〉 for the random variable corresponding to the verifier’s
verdict, and P(SK ) � V(VK ) for the random variable corresponding to transcripts
of honest protocol executions.

We now define a variant of passive security, where in a first phase the adversary
is allowed to subvert the prover algorithm; in a second phase the adversary has
to impersonate the prover. Similarly to the case of signature schemes subversion
is modelled by considering a class A of SAs, where each Ã ∈ A is an algorithm
replacing the prover algorithm P within the ID scheme ID.

Definition 27 (Subversion-Resilient Identification). Let ID = (Setup,KGen, Sign,Vrfy)
be an ID scheme, and A be some class of SAs for ID. We say that ID is (t, n, q, ε)-
secure w.r.t. continuous A-SAs if for all PPT adversaries B running in time t, we
have P [B wins] ≤ ε(κ) in the following game:

1. The challenger runs params ← Setup(1κ), (VK ,SK) ← KGen(1κ), and for-
wards (params,VK ) to B.

2. The adversary B can observe q transcripts P(SK ) � V(VK ) corresponding to
honest protocol executions between the prover and the verifier.

3. For each j ∈ [n], the adversary B can adaptively choose an algorithm Ãj ∈ A.
For each algorithm, B can observe q transcripts Ãj(SK ) � V(VK ) correspond-
ing to protocol executions between the subverted prover and the verifier.

4. The adversary B loses access to all oracles and plays the role of the prover in
an execution with an honest verifier d← 〈B(VK ),V(VK )〉; we say that B wins
if and only if d = 1.

Consider the following standard construction (see, e.g., [BFGM01]) of an identi-
fication scheme ID from a signature scheme SS = (KGen,Sign,Vrfy).

• Parameters generation. Algorithm Setup samples the public parameters params
for the signature schemes (if any).

• Key Generation. Algorithm KGen runs the key generation algorithm of the
signature scheme, obtaining (VK ,SK )← KGen(1κ).

• Identification protocol. The interaction P(SK) � V(VK) is depicted in Fig-
ure 5.1.

The theorem below states that the above protocol achieve subversion resilience
w.r.t. a given class A of SAs, provided that the underlying signature scheme is
EUF-RMA w.r.t. the same class A.

Theorem 9. Let SS be a signature scheme with message spaceM, and let A be a
class of SAs for SS. Assume that SS is (t, n, q, ε)-EUF-RMA w.r.t. continuous A-
SAs. Then the ID scheme ID from Figure 5.1 is (t′, n, q, ε′)-secure w.r.t. continuous
A-SAs where t′ ≈ t and ε′ ≤ ε+ (n+1)q

|M| .
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Prover P(SK ) Verifier V(VK )
m∗←− m∗ ←M

σ∗ ← Sign(SK ,m∗)
σ∗−→

Output d = Vrfy(VK , (m∗, σ∗))

Figure 5.1. Two-round identification using a signature scheme SS with message spaceM

Proof. For the sake of contradiction, assume that there exists an adversary B breaking
security of the identification scheme with probability larger than ε + (n+1)q

|M| . We
construct a PPT adversary B′ breaking EUF-RMA of SS with probability at least ε
(a contradiction). Adversary B′ runs in the game of Definition 26 and is described
below. The main observation is that the prover’s algorithm P is completely specified
by algorithm Sign, and thus subverting the ID scheme is equivalent to subverting
the signature scheme.

Adversary B′:

1. Receive the public parameters params and the verification key VK
for SS and forward (params,VK ) to B.

2. Whenever B wants to observe a honest transcript P(SK ) � V(VK ),
query the signing oracle obtaining a pair (mi, σi) such that σi ←
Sign(SK ,mi) and mi←$M. Forward (mi, σi) to B.

3. Whenever B specifies an algorithm Ãj ∈ A, forward Ãj to the
challenger. For each query of B to its own j-th oracle, query the
target j-th oracle obtaining a pair (m̃i,j , σ̃i,j) such that σ̃i,j ←
Ãj(SK , m̃i,j) and m̃i,j ←$M. Forward (m̃i,j , σ̃i,j) to B.

4. Finally, when B is ready to start the impersonation phase, sample
a random message m∗←$M and send it to B. Upon receiving a
value σ∗ from B output (m∗, σ∗) as forgery.

It is easy to see that B′’s simulation of B’s queries is perfect; moreover, since the
message m∗ in the impersonation stage is chosen at random from M, also the
simulation of this phase has the right distribution and in particular the forgery
(m∗, σ∗) will be valid with probability ε.

It remains to compute the probability that B′ is successful. Observe that B′
is successful whenever (m∗, σ∗) is valid and m∗ 6∈ Q ∪ Q̃. Also, note that m∗ is
independent from Q̃, so in particular

P
[
m∗ ∈ Q ∪ Q̃

]
≤ |Q|+ |Q̃|

|M|
= (n+ 1)q

|M|
.

Let E be the event that m∗ 6∈ Q ∪ Q̃. We have,

P
[
B′ wins

]
≥ P [B wins ∧ E] ≥ P [B wins]− P [¬E]

≥ P [B wins]− (n+ 1)q
|M|

> ε,
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where the last inequality follows by our initial assumption on B’s advantage. This
concludes the proof.

5.1.5 Impersonation in the Multi-User Setting

In this section we consider the multi-user setting for the impersonation definition.
We also provide a complete picture of the relationships between the definition, as
shown in Fig. 5.2.

Multi-User Impersonation

Analogous to the single-user setting, we consider two security definitions correspond-
ing to different adversarial goals.

In the indistinguishability definition for the multi-user setting adversary B now
receives u ≥ 1 key pairs from the challenger and can continuously subvert each user
independently. A formal definition follows.

Definition 28 (Indistinguishability against SAs—Multi-User). Let SS = (KGen, Sign,
Vrfy) be a signature scheme, and A be some class of SAs for SS. We say that SS is
u-users indistinguishable w.r.t continuous A-SAs if for all PPT adversaries B there
exists a negligible function ν : N → [0, 1], such that

∣∣∣P [B wins]− 1
2

∣∣∣ ≤ ν(κ) in the
following game:

1. The challenger samples b←$ {0, 1}, generates (VK i,SK i) ← KGen(1κ) for
i ∈ [u] and gives VK 1, . . . ,VKu to B.

2. The adversary B can specify polynomially many queries (adaptively and in an
arbitrary order) of the form (i, Ã) for i ∈ [u].

(a) For each such query, B is given access to an oracle that can be queried
polynomially many times on inputs m ∈M.

(b) The answer to each query m depends on the value of the secret bit b. In
particular, if b = 1, the output is σ ← Sign(SK i,m); if b = 0, the output
is σ̃ ← Ã(SK i,m).

3. Finally, B outputs a value b′ ∈ {0, 1}; we say that B wins iff b′ = b.

In the impersonation definition for the multi-user setting adversary B now
receives u ≥ 1 key pairs from the challenger and can continuously subvert each user
independently; adversary B is successful if it can impersonate any of the users. A
formal definition follows.

Definition 29 (EUF-CMA against SAs—Multi-User). Let SS = (KGen, Sign,Vrfy)
be a signature scheme, and A be some class of SAs for SS. We say that SS is
u-users EUF-CMA w.r.t. continuous A-SAs if for all PPT adversaries B there exists
a negligible function ν : N → [0, 1], such that P [B wins] ≤ ν(κ) in the following
game:

1. The challenger generates (VK i,SK i) ← KGen(1κ) for i ∈ [u] and gives
VK 1, . . . ,VKu to B.
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2. Adversary B is given oracle access to Sign(SK i, ·). Upon input query m ∈M,
this oracle returns σ ← Sign(SK i,m); let Qi be the set of all messages queried
to oracle Sign(ski,m).

3. The adversary B can specify polynomially many queries (adaptively and in an
arbitrary order) of the form (i, Ãj) for i ∈ [u] and j ∈ poly(κ).

(a) For each such query, B is given access to an oracle that can be queried
polynomially many times upon inputs m ∈M.

(b) The answer to each query m is σ̃ ← Ãj(SK i,m); let Q̃i,j be the set
containing all queried messages to oracle Ãj(SK i,m).

4. Finally, B outputs a tuple (m∗, σ∗, i∗); we say that B wins iff Vrfy(VK i∗ , (m∗, σ∗)) =
1 and m∗ 6∈ Qi∗

⋃poly(κ)
j=1 Q̃i∗,j.

Impersonation Relations

Theorem 10 formalizes the relations depicted in Fig. 5.2.

1-IMP

u-IMP

1-IND

u-IND

Figure 5.2. Diagram of the relationships between the subversion notions considered in this
paper. X → Y means that X implies Y ; X 9 Y indicates a separation between X and
Y . The lighter arrows indicates trivial implications (or implications that follow from
Theorem 10). Definition 28 is represented by u-IND and Definition 29 is represented by
u-IMP.

Theorem 10. Let SS be a signature scheme. Then the following relations hold.

(i) For all SA classes A against SS, if A is 1-IND then A is also u-IND.

Proof. Towards contradiction, consider an adversary B that wins the game
described in Definition 28. We build an adversary B′ that (using B) wins the
game described in Definition 22. Let G be the game described in Definition 28.
Consider the game G0, an identical copy of game G when b = 0, and consider
the game G1 an identical copy of game G when b = 1.
For an index k ∈ [0, u], consider the hybrid game Hk where each oracle
corresponding to query (i, Ã) such that i ≤ k behaves as Ã(SK i, ·) (i.e., as in
game G0), while all oracles corresponding to queries (i, Ã) such that i > k
behave as Sign(SK i, ·) (i.e., as in game G1). We note that H0 ≡ G1 and
Hu ≡ G0. By assumption, we know that B can distinguish between the
extreme hybrid games H0 and Hu. So there must exist a pair of hybrids Hi,



5.1 Security of Unique Signatures 81

Hi−1 that B can distinguish with a non-negligible advantage. We can construct
B′ as follows.

Adversary B′:
(a) Receive VK ∗ from the challenger and sample (VK j ,SK j) ←

KGen(1κ) for all j ∈ [u] \ {i}. Define VK i = VK ∗ and forward
(VK 1, . . . ,VKu) to adversary B.

(b) Upon input a query (j, Ã) from B, behave as follows.
• If j ≤ i− 1 answer all queries m ∈M as σ̃ ← Ã(SK j ,m);
• if j = i forward all queries m ∈M to the challenger;
• if j ≥ i answer all queries m ∈M as σ ← Sign(SK j ,m).

(c) Output whatever B outputs.

We observe that adversary B′ simulates perfectly the distribution of the games
Hi−1 (when b = 0) and Hi (when b = 1). Since adversary B can distinguish
this pair of hybrids with non-negligible probability it follows that adversary B′
wins in the single-user game with the same probability.

(ii) There exists a SA class A against SS that is 1-IMP but it is not 1-IND.

Proof. Consider SS to be an EUF-CMA signature scheme with signature size
` bits, and let A be the class of SAs for SS that always outputs 0` as the
signature of any message m ∈M. By SS being EUF-CMA, adversary B has
only a negligible probability of winning at the game described in Definition 23.
Consider the adversary B against the game described in Definition 22.

Adversary B:
(a) The challenger samples b← {0, 1}, runs (VK ,SK )← KGen(1κ)

and forwards VK to B.
(b) B queries the oracle for an arbitrary message m and receives σ

as a reply.
(c) If σ = 0` then output 0, otherwise output 1.

Adversary B clearly has a non-negligible probability of distinguishing the real
signing oracle from the subversion oracle in the game of Definition 22.

(iii) Let SS be EUF-CMA. For all SA classes A against SS, if A is u-IND then A
is also u-IMP.

Proof. Let A be a class of SAs for SS. The objective here is to show that if A
is u-users indistinguishable w.r.t continuous SAs (Definition 28) then A is also
u-users EUF-CMA w.r.t continuous SA (Definition 29). We sketch a proof by
considering a modified game for Definition 29, where all oracles behave like the
real signing oracle (one oracle for each signing key). Since the class A is u-users
indistinguishable we get that the advantage of any adversary in winning the
game of Definition 29 is negligibly close to the advantage of winning in the
modified game. However, since SS is EUF-CMA no PPT adversary can win the
modified game with non-negligible advantage, and so SS satisfies u-IMP.
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(iv) For all SA classes A against SS, if A is 1-IMP then A is also u-IMP.

Proof. Consider an adversary B that wins the game described in Definition 29.
We build an adversary B′ that (using B) wins the game described in Defini-
tion 23.

Adversary B′:

(a) Receive VK ∗ from the challenger, sample i∗←$ {1, . . . , u} and
(VK i,SK i)← KGen(1κ) for all i ∈ [u] \ {i∗}. Set VK i∗ := VK ∗
and forward (VK 1, . . . ,VKu) to adversary B.

(b) Upon each query (i,m), for i ∈ [u] and m ∈M: If i 6= i∗ reply
with σ = Sign(ski,m), else forward the query to the challenger.

(c) Upon each query (i, Ã), with i ∈ [u], behave as follows.
• For each m ∈ M chosen by the adversary B, if i 6= i∗

answer with σ̃ = Ã(SK j ,m), else forward the query to the
challenger.

(d) Eventually B outputs a forgery (i′,m′, σ′); adversary B′ outputs
(m′, σ′) as its own forgery.

Adversary B′ is successful if adversary B outputs a forgery for user i∗. Define E,
to be the event that B′ guesses correctly the index i′ = i∗; note that P [E] = 1/u.
Therefore adversary B′ has a non-negligible probability of winning at the game
described in Definition 23.

5.1.6 Unique Signature Scheme Based on QR

We showed in Section 5.1 that unique signatures are the only type of signature
scheme that are secure against undetectable subversion attacks8. The good news
is that secure unique signature schemes already exist and are quite efficient. The
bad news is that the most efficient ones have their security based on non-standard
computational assumptions, such as Φ-Hiding. In this Section we focus on efficient
unique signature schemes and we present a new unique signature scheme with a tight
security proof based on quadratic residuosity. We note that this is the first such
scheme with a tight security proof based on a standard and well studied assumption.

The most efficient (regarding signature verification time) unique signature
schemes known are the ones that the signature is computed on the output of
the hash of the message to be signed, which are called Full Domain Hash (FDH)
schemes, such as RSA-FDH [BR93] and Principal Rabin-Williams (PRW) [Ber08].
All such schemes are only secure in the Random Oracle Model (ROM) (that usually
are much more practical than schemes secure in the standard model [GHR99,CS00,
BB04,Wat05,BSW06,CJ07]). Since we focus on efficient schemes, we consider only
those secure in the ROM.

8To be more precise, we show that unique signatures are secure against all subversion attacks
that satisfies the verifiability condition.
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What is wrong with the Φ-Hiding assumption? The Φ-Hiding assumption
appears to be much stronger than factoring and it does not even hold in some
cases as shown in [Her11,SF08]. The fastest scheme to date, i.e., PRW [Ber08], is
tightly secure under a new assumption dubbed 2-Φ/4-Hiding assumption [Seu14].
As reported by Seurin [Seu14], the 2-Φ/4-Hiding assumption is clearly stronger than
quadratic residuosity on which our scheme relies instead: When N ≡ 1 mod 4, the
2-Φ/4-Hiding problem is equivalent to the problem of establishing whether −1 is a
square in Z∗N ; thus, it’s enough to provide y = −x2 mod N , for a random x ∈ Z∗N ,
to a quadratic residuosity solver to violate the 2-Φ/4-Hiding assumption.

In Table 5.1 we explore the efficient unique signature schemes and their security
reductions based on its undelying hardness assumptions.

Unique Signature Schemes Hardness Assumption
Loose Reduction Tight Reduction

Principal RW [Ber08] Factoring 2-Φ/4-Hiding
RSA-FDH [BR93] RSA Φ-Hiding
BLS [BLS04] EC-CDH No reduction
Our Scheme Factoring Quadratic Residuosity

Table 5.1. Unique signature schemes and their hardness assumptions.

State of Affairs. A seminal impossibility result by Coron [Cor02] states that any
FDH signature scheme with unique signatures could not hope to have a tight security
proof. At Eurocrypt 2012, Kakvi et al. [KK12] clarified that Coron’s impossibility
result only holds when the trapdoor permutation is certified. They also presented a
tight security proof for RSA-FDH based on the Φ-Hiding assumption [CMS99].

Bernstein [Ber08] studied all variants of Rabin-Williams signatures and devised
an ingenious tight proof for Rabin-Williams with derandomized output (“fixed
unstructured”), where it releases systematically one of the four square roots which
is initially selected at random. Bernstein provides also a loose proof for PRW and
left as an open problem finding a tight proof for it. Seurin [Seu14] first showed that
a variant of the Rabin function is lossy and then presented a tight security proof for
PRW, but under a new assumption dubbed 2-Φ/4-Hiding assumption.

Thus, to summarize: There is no known tight security proof for any unique
signature FDH scheme from the assumption that the underlying trapdoor permu-
tation is one-way. All known tight proofs rely on the lossiness of the trapdoor
permutation and are based on variants of the Φ-Hiding assumption. Seurin (cf.
Theorem 5 in [Seu14]) noted that it is very unlikely that RSA and Rabin-Williams
FDH signatures will have a tight security reduction from, respectively, inverting
RSA or factoring.

It is evident that the state of affairs above is a bit confusing. RSA and Rabin-
Williams FDH signatures with loose proofs were criticized as being potentially
impractical due to the large size of the parameters involved. Their tight proofs
however rely on new assumptions that appear to be markedly stronger than fac-
toring [Her11,SF08]. How should these results be interpreted in practice? Should
we trust these new assumptions and keep parameters short or should we use large
parameters to account for possible cryptanalytic attacks on these new assumptions?
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Arguably the next best assumption after factoring is quadratic residuosity which
has been extensively studied, at least as much as the RSA assumption. Therefore we
depart from the current approaches and look for unique signature FDH schemes with
a tight security reduction directly from quadratic residuosity. Admittedly this can
be achieved with little effort: It’s enough to apply the transformation of Kakvi and
Kiltz [KK12] to a lossy function based on quadratic residuosity from [FGK+13]. As
far as we could ascertain, this is the first unique signature FDH scheme tightly secure
under the quadratic residuosity assumption (and loosely secure under factoring).
In addition, the reduction is tighter than the one in [Seu14], i.e., our scheme is
closer to quadratic residuosity than Rabin-Williams with unique signatures is to
the 2-Φ/4-Hiding assumption. The efficiency of our scheme is comparable to that
of schemes in the Rabin-Williams family which are considered the fastest signature
verification schemes ever devised [Ber08].

The scheme does require the computation of a Jacobi symbol but we believe
such a computation carries an unfair stigma. In reality, computing Jacobi symbols
can be performed very efficiently [SS93, ES98] (in particular in O(n2/ logn) as
reported in [ES98]), and can be parallelized [ES98] to harness recent multicore
and/or distributed platforms.

The Signature Scheme

In this section we describe the signature scheme. The scheme is derived from the
lossy function of [FGK+13]. The parameters are described below.

• Security parameter κ (e.g. κ = 2048).

• N = p · q s.t. p, q are primes, p ≡ q ≡ 3 mod 4 and |p| ≈ |q| ≈ κ/2.

• Collision resistant hash function H : {0, 1}∗ → Z∗N .

We define the following functions h, j : ZN → {0, 1},

h(x) =
{

1, if x > N/2
0, otherwise (5.5)

j(x) =
{

1, if JN (x) = −1
0, otherwise (5.6)

Lemma 2 shows that the four square roots of some y ∈ QRN take all the values of
j(x), h(x). We formally define the algorithms KGen (Algorithm 3), Sign (Algorithm 4)
and Vrfy (Algorithm 5) in this Section.

In Algorithm 4 we need to make sure that y′ is a quadratic residue before we try
to compute its four square roots. Note that j(x) = 1 if and only if JN (x) = −1 and
since JN (r) = −1 (by definition) it is guaranteed that JN (y) = 1. The next step is
to determine if y is a quadratic residue or not, which is easy to compute knowing the
private key. If y is not a quadratic residue, we compute y′ = y · s to get a quadratic
residue, otherwise when y already is a quadratic residue we just set y′ = y.
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Algorithm 3: (KGen) Key generation algorithm
input : Security parameter κ
output :Matching public and private keys (PK ,SK )

1 Choose random primes p, q s.t. p ≡ q ≡ 3 mod 4;
2 N = pq;
3 r ← Z∗N s.t. JN (r) = −1;
4 s← Z∗N s.t. JN (s) = 1 and s 6∈ QRN ;
5 PK ← (N, r, s); SK ← (p, q);
6 return (PK ,SK )

Algorithm 4: (Sign) Signing algorithm
input :Message m, key pair (pk, sk)
output : Signature σ of message m under the key pair (pk, sk)

1 b← 0;
2 x← H(m);
3 y ← x · rj(x);
4 if (y 6∈ QRN ) then b← 1;
5 y′ ← y · sb
6 Let {y′1, y′2, y′3, y′4} be the four square roots of y′;
7 σ ← y′i s.t. j(y′i) = j(x) and h(y′i) = b;
8 return σ

As the signature of message m, we choose the only square root (Lemma 2) of
y′ that agrees to the values of j(x) and the bit b (e.g., if Jn(x) = −1 and b = 1 we
choose the only y′i such that Jn(y′i) = −1 and y′i > N/2).

To check the correctness of Algorithm 5 we note that σ2 = y′. To obtain x it is
enough to compute x = y′ · r−j(σ) · s−h(σ) to “cancel out” the values r and s. Now it
suffices to compute H(m) and compare it to x to check the validity of the signature.

Algorithm 5: (Vrfy) Signature verification algorithm
input :Candidate signature σ, message m, public key pk
output : 1 if signature is accepted, 0 otherwise

1 if σ 6∈ {1, ..., N − 1} return 0;
2 if H(m) = σ2 · r−j(σ) · s−h(σ) then
3 return 1;
4 else
5 return 0;

Security Analysis

In this section we analyse the security of the proposed signature scheme. We first
present a loose security proof based on the hardness of factoring, and later we show
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that our signature scheme has a tight security proof based on the QR assumption.
To achieve the latter we use the result of [KK12].

Loose Security Proof Based on Factoring.

Theorem 11. Assuming that the Integer Factorization Problem (IFP) is (t, ε)-secure,
our scheme is (t′, qh, qs, ε′)-secure, with:

t = t′ + (qh + qs + 1) ·O(κ2)

ε = ε′

2 · (qh + qs + 1)

Proof. Let A be an adversary that (t′, qh, qs, ε′)-breaks our signature scheme. We
build an inverter I that (t, ε)-breaks the IFP. This construction is standard and is
based on the one from [BR96].

The inverter I receives as input the public key N , and its objective is to factor N .
I generates the parameters r, s according to the definition of the scheme. We allow
the adversary A to make two types of oracle queries, namely hash queries and sign
queries. The inverter I must answer the queries itself, with the same distribution as
a real oracle would. Inverter I chooses a random j ∈ {1, ..., q}, where q = qh + qs.
We now describe how I answers the two types of queries.

• Hash queries: When A makes a hash query, I increments a counter i that is
initially set to zero, and set mi = m. If i = j, what happens with probability
1/q, I chooses a random y ∈ Z∗N and random values l, z ∈ {0,−1} and sets
yi = y2 · rl · sz and return yi, otherwise it chooses a random σi ∈ Z∗N , sets
yi = f(σi) and return yi.

• Sign queries: When A makes a sign query I verifies if there is a mi in the list
such that mi = m. If not, I simply makes the corresponding hash query and
replies with σi that corresponds to the message mi.

The adversary A eventually outputs a forgery (m,x). We assume that m = mi

for some i. If i = j we have that both x′ = x · r−j(σ) · s−h(σ) and y are square roots
of y2, so with probability 1/2, x′ and y are different and we can factor N by the
computing gcd(N, x− y). The running time for I is the running time of adversary A
plus all the oracle queries.

The above proof is a loose security proof based on integer factorization. We note
that the above security reduction can be further improved by applying the results of
Coron [Cor00], where we can achieve roughly ε = ε′

qs
.

In the next paragraph we present a tight security proof based on the Quadratic
Residuosity assumption (QR).

Tight Security Proof Based on Quadratic Residuosity. Our signature scheme
is inspired by a lossy function described in [FGK+13]. Since the function is lossy,
we can use the result of [KK12] to prove a tight security for our scheme based on its
lossiness.
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In the following description of the lossy function we use the functions j and h
described in Section 5.1.6. We define the algorithms KGen, lossyKGen, Eval, Invert
below:

• KGen: On input κ the algorithm chooses an κ bit modulus N = pq, such that
p ≡ q ≡ 3 mod 4 are κ/2 random prime numbers. Then it chooses r ∈ Z∗N
such that JN (r) = −1, and a random s ∈ Z∗N such that JN (s) = 1 and s is
not a quadratic residue. The function index is i = (N, r, s), the trapdoor is
(p, q) and the function fi is defined on the domain Di = {1, ..., N − 1}.

• lossyKGen: On input κ the algorithm chooses an κ bit modulus N = pq, such
that p ≡ q ≡ 3 mod 4 are κ/2 random prime numbers. Then it chooses
r ∈ Z∗N such that JN (r) = −1, and a random s ∈ Z∗N such that JN (s) = 1 and
s is a quadratic residue. The function index is i = (N, r, s), and the function
fi is defined on the domain Di = {1, ..., N − 1}.

• Eval: Given a function index i = (N, r, s) and a x ∈ Di, the algorithm outputs:

fN,r,s(x) = x2 · rj(x) · sh(x) mod N

• Invert: Given an index of an injective function i = (N, r, s), its trapdoor (p, q),
and a value y = fN,r,s(x), the algorithm Invert retrieves x as follows.

– Find j(x) by computing JN (y) and set y′ = y · r−j(x).
– Find h(x) by checking if y′ is a quadratic residue mod N and set y′′ =
y′ · s−h(x).

– Find the four square roots of y′′ and return the only one that agrees with
j(x) and h(x).

We point out that the aforementioned function is a permutation over the domain
{1, ..., N − 1}. The injective KGen and the lossy lossyKGen functions only differ in
the s parameter, that in both cases have Jacobi symbol 1 but it is not a quadratic
residue in the injective function and it is a quadratic residue in the lossy function.
It is easy to see that an algorithm that is able to distinguish between the injective
and the lossy function must solve the QR problem.

If we assume that the Quadratic Residuosity assumption is (tQR, εQR)-hard, then
this function is regular (2, tQR, εQR)-lossy, meaning that the lossy function is 2-to-1,
i.e. have two pre-images for each image.

The security of the signature scheme now follows from lossiness of the function.

Theorem 12 (Theorem 8 in [KK12]). Let T DP = (Gen,Eval, Invert) be a regular
(l, t′, ε′)-lossy trapdoor function. Then for any qh, qs, the T DP-FDH signature
scheme is (t, qh, qs, ε)-EUF-CMA secure in the random oracle model with:

t = t′ − qh · T DP

ε =
(2l − 1
l − 1

)
· ε′

where T DP is the time to compute the Eval procedure of T DP.
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Theorem 13. Let the Quadratic Residuosity assumption be (tQR, εQR)-hard. Then
for any qh, qs, our signature scheme is (t, qh, qs, ε)-EUF-CMA secure in the random
oracle model with:

t = tQR − qh · O(κ2)

ε = 3 · εQR

Proof. The proof immediately follows from the results of [KK12], therefore we omit
it here.

Performance

We assume p and q are safe primes, i.e., p = 2p′+1 and q = 2q′+1. When the factors
p and q are known, calculating the Jacobi symbol of an element is very efficient since
it is enough to compute two Lagrange symbols. In particular, for x ∈ Z∗N , JN (x) = 1
if xp′ mod p = xq

′ mod q = 1, otherwise JN (x) = −19.
The signature σ is the unique square root y′i of the square y′ such that j(y′i) = j(x)

and y′i > N/2 (or y′i ≤ N/2). Computing such a square root is very efficient thanks
to the Chinese remainder theorem. It is enough to compute integers a, b such
that ap + bq = 1 (these can be precomputed and stored once for all) and then
sp = (y′)(p′+1)/2 mod p and sq = (y′)(q′+1)/2 mod q. Suppose that the selected
square root is the principal one, then the signature σ is simply equal to (b·q·sp+a·p·sq)
mod N .

In general, when p and q are known, the computations of the Jacobi symbol
and a square root share several calculations and can be optimized when performed
simultaneously [Ber03]. Computing Jacobi symbols when p and q are unknown
is computationally more expensive than other modular operations and should be
avoided if possible.

5.2 Reverse Firewalls for Signatures

In Section 5.1 we have shown that unique signatures are secure against a restricted
class of SAs, namely all SAs that meet the so-called verifiability condition. As
discussed in Section 1, by removing the latter requirement (i.e., allowing for arbitrary
classes of SAs in Definition 22 and 23) would require that a signature scheme SS
remains unforgeable even against an adversary allowed arbitrary tampering with the
computation performed by the signing algorithm. This is impossible without making
further assumptions.

In this section we explore to what extent one can model signature schemes secure
against arbitrary tampering with the computation, by making the extra assumption
of an un-tamperable cryptographic reverse firewall (RF) [MS15]. Roughly, a RF
for a signature scheme is a (possibly stateful) algorithm10 that takes as input a
message/signature pair and outputs an updated signature; importantly the firewall

9We do not consider cases where the Jacobi or Legendre symbols are 0 since they happen with
negligible probability.

10The reverse firewall could be deployed in hardware or in software, as long as its requirements
are met.
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has to do so using only public information (in particular, without knowing the
signing key). A formal definition follows.

Definition 30 (RF for signatures). Let SS be a signature scheme. A RF for SS is a
pair of algorithms FW = (Setup,Patch) specified as follows: (i) Setup takes as input
the security parameter and a verification key VK ∈ VK, and outputs some initial
(public) state δ ∈ {0, 1}∗; (ii) Patch takes as input the current (public) state δ, and a
message/signature pair (m,σ) and outputs a possibly modified signature or a special
symbol ⊥ and an updated (public) state δ′. We write this as σ′ ← Patchδ(m,σ) (and
omit the updated state δ′ as an explicit output).

We will typically assume that the current state δcur of the RF, can be computed
efficiently given just the verification key VK , the initial state δ and the entire history
of all inputs to the RF.

5.2.1 Properties

Below, we discuss the correctness and security requirements of cryptographic RF
FW for a signature scheme SS.

Maintaining functionality. The first basic property of a RF is that it should
preserve the functionality of the underlying signature scheme, i.e. if a signature σ on
a message m is computed using signing key SK , and the firewall is initialized with
the corresponding verification key VK , the patched signatures σ′ should (almost
always) be a valid signatures for m under VK . More precisely, we say that FW is
functionality maintaining for SS, if for any polynomial p(κ) and any vector of inputs
(m1, . . . ,mp) ∈M, the following quantity is negligible in the security parameter

P
[

∃i ∈ [p] s.t.
Vrfy(VK , (mi, σ

′
i)) = 0 :

(VK ,SK )← KGen(1κ), δ ← Setup(VK , 1κ)
σ1 ← Sign(SK ,m1), . . . , σp ← Sign(SK ,mp)
σ′1 ← Patchδ(m1, σ1), . . . , σ′p ← Patchδ(mp, σp)

]
,

where the probability is taken over the coin tosses of all involved algorithms. Recall
that each invocation of algorithm Patch updates the (public) state δ of the RF.

Preserving Unforgeability. The second property of a RF is a security require-
ment. Note that a firewall can never “create” security (as it does not know the
signing key). Below we define what it means for a RF to preserve unforgeability of
a signature scheme against arbitrary tampering attacks.

Definition 31 (Unforgeability preserving RF). Let SS = (KGen,Sign,Vrfy) be
a signature scheme with RF FW = (Setup,Patch). We say that FW (t, n, q, ε)-
preserves unforgeability for SS against continuous SAs if for all adversaries B
running in time t we have that P [B wins] ≤ ε in the following game:

1. The challenger runs (VK ,SK) ← KGen(1κ), δ ← Setup(VK , 1κ), and gives
(VK , δ) to B.
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2. The adversary B is given oracle access to Sign(SK , ·). Upon input the i-th
query mi, this oracle returns σi ← Sign(SK ,mi). Let Q = {m1, . . . ,mq} be
the set of all signature queries.

3. The adversary B can adaptively choose an arbitrary algorithm Ãj, and corre-
spondingly obtain oracle access to Patchδ(·, Ãj(SK , ·)):

• Upon input the i-th query m̃i,j, for i ∈ [q] and j ∈ [n], the oracle returns
σ̃i,j ← Patchδ(m̃i,j , Ãj(SK , m̃i,j)) and updates the public state δ;

• Whenever σ̃i,j = ⊥ the oracle enters a special self-destructs mode, in
which the answer to all future queries is by default set to ⊥.

Let Q̃j = {m̃1,j , . . . , m̃q,j} be the set of all queries for each Ãj.

4. Finally, B outputs a pair (m∗, σ∗); we say that B wins iff Vrfy(VK , (m∗, σ∗)) =
1 and m∗ 6∈ Q ∪ Q̃, where Q̃ :=

⋃n
j=1 Q̃j.

Whenever t = poly(κ), q = poly(κ) and ε = negl(κ) we simply say that FW
preserves unforgeability for SS. Furthermore, in case A specifies all of its queries
{Ãj , m̃i,j}j∈[n],i∈[q] at the same time we say that FW non-adaptively preserves
unforgeability.

We observe that Definition 31 is very similar to Definition 23, except for a few
crucial differences. First, note that the above definition considers arbitrary classes
of SAs instead of SAs within a given class A; this is possible because the output
of each invocation of the subverted signing algorithm is patched using the firewall
(which is assumed to be un-tamperable).

Second, observe that the above definition relies on the so-called self-destruct
capability: Whenever the firewall returns ⊥, all further queries to any of the oracles
results in ⊥; as we show in Section 5.2.2 this is necessary as without such a capability
there exists simple generic attacks that allow for complete security breaches. We
stress, however, that the assumption of the self-destruct capability does not make
the problem of designing an unforgeability preserving reverse firewall trivial. In fact,
the biased-randomness attacks of Section 4.3.1 allow to break all randomized scheme
without ever provoking a self-destruct. On the positive side, in Section 5.2.3, we show
how to design an unforgeability preserving RF for any re-randomizable signature
scheme.

Impossibility of exfiltration resistance. More generally, one might require a
stronger security property from a RF. Namely, we could ask that patched signatures
are indistinguishable from real signatures to the eyes of an attacker. This property,
which is called exfiltration resistance in [MS15], would be similar in spirit to our
definition of indistinguishability w.r.t. continuous SAs (see Definition 22).

It is not hard to see that exfiltration resistance against arbitrary SAs is impossible
to achieve in the case of signature schemes; this is because the attacker could simply
set the subverted signing algorithm to always output the all-zero string, in which case
the RF has no way to patch its input to a valid signature (and thus the adversary
can easily distinguish subverted patched signatures from real signatures).11

11We note, however, that our techniques from Section 5.1 can be extended to design a RF that is
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5.2.2 Necessity of Self-Destruct

We show that no RF can preserve both functionality and unforgeability, without
assuming the self-destruct capability. This is achieved via a generic (non-adaptive)
attack that allows to extract the secret key in case the RF does not self-destruct.
The attack itself is a generalization of a similar attack by Gennaro et al. [GLM+04]
in the context of memory tampering.

Theorem 14. Let SS be an EUF-CMA signature scheme. No RF FW can at the
same time be functionality maintaining and non-adaptively (poly(κ), 1, poly(κ), ν(κ))-
preserve unforgeability for SS, without assuming the self-destruct capability.

Proof sketch. Consider the following adversary B playing the game of Definition 31
(omitting the self-destruct capability).

• Upon input the verification key VK , and the initial state δ, initialize τ := 1.

• Forward Ãτ to the challenger, where algorithm Ãτ is defined as follows: Upon
input a message m̃i, set j = τ mod ` (where ` := |SK |) and

– If SK [j] = 1, output σ̃i ← Sign(SK , m̃i).
– Else, output 0|σ|.

Update τ ← τ + 1.

• Let (m̄, σ̃′1), . . . , (m̄, σ̃′`) be the set of tampered signature queries (and answers
to these queries) asked by B, where σ̃′i ← Patchδ(m̄, Ãτ (SK , m̄)). Define
SK ′[i] = Vrfy(VK , (m̄, σ̃′i)) and return SK ′ := (SK ′[1], . . . ,SK ′[`]).

Notice that B specifies its queries non-adaptively, and moreover it only uses
one subversion which is queried upon a fixed message m̄ ∈M. We will show that
the extracted key SK ′ is equal to the original secret key SK with overwhelming
probability, which clearly implies the statement. The proof is by induction; assume
that the statement is true up to some index i ≥ 1. We claim that SK ′[i+1] = SK [i+1]
with all but negligible probability. To see this, define the event Ei+1 that SK [i+1] = 0
and Vrfy(VK , (m̄, σ̃′i+1)) = 1 or SK [i+ 1] = 1 and Vrfy(VK , (m̄, σ̃′i+1)) = 0. By the
assumption that the RF does not self-destruct and is functionality maintaining, we
get that the latter sub-case happens only with negligible probability. On the other
hand, if the former sub-case happens we get that the RF forged a signature on m̄,
which contradicts EUF-CMA security of SS. By a union bound, we get that P [Ei+1]
is negligible as desired.

5.2.3 Patching Re-Randomizable Signatures

We design a RF preserving unforgeability of so-called re-randomizable signature
schemes (that include unique signatures as a special case).

weakly exfiltration resistant, namely it is exfiltration resistant against restricted SAs that satisfy the
verifiability condition.
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Alice RAlice’s Firewall R
m ∈M
σ̃ ← Ã(SK ,m)

m,σ̃
−−−−→

Read δ = (VK , β)
If β = 1 set σ̃′ = ⊥
Else if Vrfy(VK , (m, σ̃)) = 1

σ̃′ ← ReRand(VK ,m, σ̃)
Else set σ̃′ = ⊥ and β = 1
Forward (m, σ̃′)

Figure 5.3. A cryptographic reverse firewall preserving unforgeability of any re-
randomizable signature scheme against arbitrary SAs.

Definition 32 (Re-randomizable signatures). A signature scheme SS = (KGen,Sign,
Vrfy) is efficiently r-re-randomizable, if there exists a PPT algorithm ReRand
such that for all messages m ∈ M and for all (VK ,SK) ← KGen(1κ) and σ ←
Sign(SK ,m), we have that ∆ (ReRand(VK ,m, σ); Sign(SK ,m)) ≤ r.

Note that unique signatures are efficiently re-randomizable, for ReRand(VK ,m, σ)
= σ and r = 0; Waters’ signature scheme [Wat05], and its variant by Hofheinz et
al. [HJK12], are also efficiently re-randomizable.

Our firewall, which is formally described in Fig. 5.3, first checks if σ is a valid
signature on message m under key VK (provided that a self-destruct was not
provoked yet). If not, it self-destructs and returns ⊥; otherwise it re-randomizes σ
and outputs the result. The self-destruct capability is implemented using a one-time
writable bit β (which is included in the public state).

Theorem 15. Let SS be a (t, (q + 1)n, ε)-EUF-CMA signature scheme that is
efficiently r-re-randomizable and that satisfies νc-correctness. Then, the RF of
Fig. 5.3 maintains functionality and (t′, q, ε′)-preserves unforgeability for SS, where
t′ ≈ t and ε′ ≤ qn · (νc + r + ε).

Proof. The fact that the firewall maintains functionality follows directly by νc-
correctness of SS. We now show the firewall preserves unforgeability. Let G be the
game of Definition 31; we write (i∗, j∗) ∈ [q]× [n] for the pair of indexes in which
the firewall self-destructs (if any). Consider the modified game H that is identical
to G except that tampered signature queries are answered as described below:

• For all j < j∗, upon input (j, m̃i,j) return σi,j ← Sign(SK , m̃i,j) for all i ∈ [q].

• For j = j∗, upon input (j, m̃i,j) if i < i∗ return σi,j ← Sign(SK , m̃i,j); else
return ⊥.

• For all j > j∗, upon input message m̃i,j return ⊥ for all i ∈ [q].

Claim 15.1. |P [B wins in G]− P [B wins in H]| ≤ qn · (νc + r).
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Proof. For an index k ∈ [0, n], consider the hybrid game Hk that answers each query
(j, m̃i,j) such that j ≤ k as in game G, while all queries (j, m̃i,j) such that j > k are
answered as in H. We note that H0 ≡ H and Hn ≡ G. Abusing notation, let us
write Hk for the distribution of the random variable corresponding to B’s view in
game Hk.

We will show that ∆ (Hk−1,Hk) ≤ q · (νc+r) for all k. Fix a particular k ∈ [0, n],
and for an index l ∈ [0, q] consider the hybrid game Hk,l that is identical to Hk

except that it answers queries (k, m̃i,k) with i ≤ l as in game G, while all queries
(k, m̃i,k) with i > l are treated as in H. Observe that Hk,0 ≡ Hk−1, and Hk,q ≡ Hk.

We now argue that for each l ∈ [q], one has that SD(Hk,l−1,Hk,l) ≤ νc + r.
Observe that, since for k > j∗ both games always return ⊥, we can assume without
loss of generality that k ≤ j∗. Note that the only difference between Hk,l−1 and Hk,l

is how the two games answer the query (k, m̃l,k): Hk,l−1 returns σl,k ← Sign(SK , m̃l,k)
whereas Hk,l returns σ̃′l,k ← Patchδ(m̃l,k, σ̃l,k) where σ̃l,k ← Ãk(SK , m̃l,k). Let El,k
be the event that Vrfy(VK , (m̃l,k, σl,k)) = 0. We have

∆ (Hk,l−1; Hk,l) ≤ ∆ (Hk,l−1; Hk,l|¬El,k) + P [El,k] (5.7)
≤ r + νc. (5.8)

Eq. (5.7) follows by Lemma 1 and Eq. (5.8) by the fact that Hk,l−1 and Hk,l are
statistically close (up to distance r) conditioned on El,k not happening, and moreover
P [El,k] ≤ νc. The former is because signatures are re-randomizable, and thus (as
long as the firewall did not self-destruct) the output of ReRand is statistically close
(up to distance r) to the output of the original signing algorithm; the latter follows
by νc-correctness of the signature scheme.

The statement now follows by the above argument and by the triangle inequality,
as

∆ (G,H) ≤
n∑
k=1

∆ (Hk−1,Hk)

≤
n∑
k=1

q∑
l=1

∆ (Hk,l−1,Hk,l)

≤ qn · (νc + r).

Claim 15.2. P [B wins in H] ≤ qn · ε.

Proof. Towards a contradiction, assume B wins in game H with probability larger
than qn · ε. Wlog. we assume that B always outputs its forgery after provoking a
self-destruct.12 We build an adversary B′ (using B) that breaks EUF-CMA of SS.
Adversary B′ is described below.

Adversary B′:

12If not we can always modify B in such a way that it asks one additional query provoking a
self-destruct; this clearly does not decrease B’s advantage.
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• Receive the verification key VK from the challenger, sample a
random pair (j∗, i∗)←$ [n]× [q], and return VK to B.

• Upon input the i-th signature query mi, forward this value to the
signing oracle receiving back a signature σi ← Sign(SK ,mi). Return
σi to B.

• Upon input a query of the form (j, m̃i,j) answer as follows:
– In case j < j∗, forward m̃i,j to the signing oracle, obtaining
σ̃i,j ← Sign(SK , m̃i), and return σ̃i,j to B.

– In case j = j∗, if i < i∗ forward m̃i,j to the signing oracle,
obtaining σ̃i,j ← Sign(SK , m̃i), and return σ̃i,j to B. Else,
return ⊥.

– In case j > j∗ answer with ⊥.
• Whenever B outputs (m∗, σ∗), output (m∗, σ∗).

For the analysis, note that B′ runs in time similar to that of B and asks a total
of at most q + qn signing queries. Moreover, define the event E that B′ guesses
correctly the query (j∗, i∗) where B provokes a self-destruct. Clearly, in case E
happens we have that B′ perfectly simulates the distribution of game H. Hence
P [B′ wins] ≥ (qn · ε)/(qn) = ε, a contradiction.

The proof follows by combining the above two claims.

5.3 Secure Outsourcing of Circuit Manufacturing
The fabrication process adopted by the semiconductor industry is fundamentally
global, involving several parties that may not be trusted. As a result, integrated
circuits (ICs) are vulnerable to so-called hardware Trojans that can compromise
or disable critical systems, or covertly leak sensitive information [LKG+09,CNB09,
BRPB14]. Analogously to a software Trojan, a hardware Trojan is a back-door
deliberately added to the circuit to disrupt its operation or disable it when certain
events occur. A Trojan can be added to the circuit during the design phase, by some
malicious designer, or more often during the manufacturing phase, by some malicious
off-shore fabrication facility. A hardware Trojan’s objectives may be to modify the
functionality of the circuit (e.g., in order to compromise or disable critical systems),
modify its specification (e.g., by changing its energy consumption), covertly leak
sensitive information (e.g., from a secret memory), or simply disable the entire circuit
when instructed to do so [BHN11]. Once the Trojan is inserted into the circuit it
can stay activated the entire time, or it can be “triggered” by some event such as a
special input to the circuit.

Reliably detecting compromised circuit components through testing and reverse
engineering appears to be an impossible task given our current technology [BR15].
Indeed, all non-destructive testing techniques can easily be circumvented by properly
obfuscating embedded Trojans. The U.S. military recognized this threat and started
two programs, Trust and IRIS, with the intent of developing techniques and metrics
to certify ICs going into weapon systems. The main concern is that advanced
weapons may appear to work properly but then switch off in combat or when
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triggered by some special events. Another stated concern is information leakage,
where a malicious component is programmed to leak sensitive information [Sha07b].

The U.S. military however currently obtains trusted chips through the DOD
Trusted Foundry program which is currently managed by the NSA’s Trusted Access
Program Office (TAPO). Within this program, a trusted design center and foundry
are established through an exclusive partnership with IBM for secure semiconductor
fabrication and ASIC services, along with the involvement of several Trusted Suppliers
which are accredited by an accreditation authority (DMEA). The intent of the Trusted
Foundry program is to provide national security and defense programs with access
to ICs from trusted sources. However, a recent report by the U.S. Government
Accountability Office (GAO) [Mak15], released in April 2015, found that even though
the Trusted Foundry program started in 2004, IBM remained the sole-source supplier
for leading-edge technologies meeting the criteria put forth by DOD. GAO’s report
highlights two main issues: First, it notices that IBM sold its microelectronics
fabrication business to a foreign-owned entity (GlobalFoundries). Second, relying on
a single source supplier for defense microelectronics hinders competition and thus
innovation in this critical area.

In this Section, we propose a new approach to the untrusted fabrication problem.
We assume that the IC specification and design are trusted but the fabrication
facility is not. Rather than testing or reverse engineering the IC hardware received,
we employ it in a controlled environment and continuously verify its operations.
Our approach makes sense as long as the controlled environment can be: (i) made
cheaply, and (ii) run efficiently. We show how to reach these two goals whenever the
main objective is to prevent hardware Trojans from releasing sensitive information.

By allowing manufacturers to use off-shore fabrication facilities, we ensure a
high degree of competition among suppliers, thus providing lower cost, improved
innovation, and access to leading-edge microelectronics.

5.3.1 Secure Circuit Fabrication

In this section we put forward a formal model for assessing security of a circuit
whose production is outsourced to one or more untrusted facilities. We start by
recalling the standard notion of connected component of a circuit or graph.

Definition 33 (Component). A circuit Γ′ = (V ′, E′) is a (connected) component
of circuit Γ = (V,E) if V ′ ⊆ V , E′ ⊆ E and for all g1, g2 ∈ V ′ we have that
(g1, g2) ∈ E′ iff (g1, g2) ∈ E.

Next, we introduce the notion of an outsourcing circuit compiler (or simply
compiler). In a nutshell a circuit compiler is an efficient algorithm Φ that takes as
input (the description of) a circuit Γ, and outputs (the description of) a compiled
circuit Γ̂. Additionally, Φ returns a list of sub-components Γ̂i of Γ̂ whose production
can be outsourced to one or more external manufacturers, together with the relevant
information how to connect those sub-components with the remaining ones (that
need to be built in-house) in order to re-assemble the compiled circuit Γ̂.

Definition 34 (Outsourcing circuit compiler). Let Γ be an arbitrary circuit. A
(ρ,m)-outsourcing compiler Φ is a PPT algorithm (Γ̂, α) ← Φ(Γ), such that the
following holds:
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Figure 5.4. On the left side we present the description of a (compiled) circuit. On the
right side the same circuit is represented as three different components. The mapping
functionM establishes the connections between the blue component and the green and
red components.

• α := ((Γ̂1, . . . , Γ̂n),M, (I1, . . . , Im)), with n ∈ N and Ij ⊆ [n], for j ∈ [m],
mutually disjoint subsets.

• (Γ̂1, . . . , Γ̂n) are disjoint (connected) components of Γ̂ such that V =
⋃
i∈[n] Vi,

where Γi = (Vi, Ei).

• M : V × V → {0, 1} is a function such thatM(v, v′) = 1 iff v, v′ ∈ Vi, Vj for
some i 6= j and (v, v′) ∈ E.

We call ρ :=
∑

i∈[n]\I1∪...∪Im
|Γ̂i|

|Γ| the outsourcing ratio of the compiler.

Intuitively, in the above definition, the outsourcing ratio ρ represents the fraction
of the compiled circuit (w.r.t. the original circuit) that should be built in-house.
Note that the sub-components (Γ̂i)i∈[n] “cover” the entire compiled circuit Γ̂ (with-
out overlap), and the mapping functionM specifies how to connect the different
components in order to reconstruct Γ̂. The sets of indexes Ij ⊆ [n] represents the
sub-components whose production will be outsourced to manufacturer j ∈ [m]. See
Fig. 5.4 for a pictorial representation in a simple toy example.

Correctness of an outsourcing compiler demands that the compiled circuit main-
tains the same functionality of the original circuit.

Definition 35 (Correctness). We say that an outsourcing compiler Φ is functionality
preserving if for all circuits Γ, for all values of the initial memory M1, and for
any set of public inputs X1, . . . , Xq, the sequence of outputs Y1, . . . , Yq produced by
running the original circuit Γ starting with state M1 is identical to the sequence of
outputs produced by running the transformed circuit Γ̂ starting with state M1 (with
all but negligible probability over the randomness of the compiler and the randomness
of the original and compiled circuit).

Security

We define security using the simulation paradigm. Our approach is similar in spirit to
previous work on tamper-resilient circuit compilers (see, e.g., [IPSW06,FPV11]). In
a nutshell, security is defined by comparing two experiments. In the first experiment,
also called the real experiment, the circuit designer compiles the circuit and outsources
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the production of some of the components in the compiled circuit to a set of m
untrusted manufacturer. A subset of size t of the manufacturers are malicious, and
controlled by a monolithic adversary A; of course the circuit designer does not know
which manufacturers are malicious and which ones are honest. During production, A
is allowed to completely change the outsourced circuit components under its control,
whether by adding, removing or changing gates and/or wires. Later, the designer
assembles the circuit by re-combining all the components (the outsourced ones and
the ones built in-house). Finally A can access the assembled circuit in a black-box
way, that is, it can observe inputs/outputs produced by running the assembled
circuit (with some initial memory M1).

In the second experiment, also called the ideal experiment, a simulator is given
black-box access to the original circuit (initialized with initial memory M1). The
goal of the simulator is to produce an output distribution which is indistinguishable
from the one in the real experiment. In its most general form, our definition allows
the simulator to obtain a short leakage on the initial memory. This captures the
feature that the adversary in the real experiment could learn at most a short amount
of information on the private memory.

Real experiment. The distribution RealA,Φ,C,Γ,M1(κ) is parameterized by the
adversary A = (A0,A1), the set of corrupt manufacturers C, the compiler Φ, and the
original circuit Γ with initial memory M1.

1. (Γ̂, α)← Φ(Γ): In the first step, the description of the original circuit Γ is given
as input to the compiler Φ; the compiler outputs the description of the compiled
circuit Γ̂ plus the auxiliary information α := ((Γ̂1, . . . , Γ̂n),M, (I1, . . . , Im))
which is used to specify how the compiled circuit is split into sub-components,
how the different sub-components are connected (via the mapping function
M), and the subset of sub-components whose production is outsourced to each
manufacturer (in the index sets Ij , for j ∈ [m]).

2. ({Γ̂′i}i∈I , τ)← A0(1κ, {〈Γ̂i〉}i∈I , 〈Γ〉, 〈Γ̂〉): The adversary is given as input the
description of the components from the index set I = ∪j∈CIj , the description
of the original circuit Γ, the description of the compiled circuit Γ̂, and returns
the modified components along with some value τ that may contain some
auxiliary state information.

3. Γ̂′ := (V̂ ′, Ê′): The compiled circuit Γ̂′ is rebuilt by replacing the components
(Γ̂i)i∈I with the modified components (Γ̂′i)i∈I , and by connecting the different
components as specified by the mapping functionM.

4. AΓ̂′[M1](·)
1 (1κ, τ): Adversary A1, with auxiliary information τ , is given oracle

access to the rebuilt circuit Γ̂′ with compiled private memory M1.

Simulation. The distribution IdealS,A,Φ,C,Γ,M1,`(κ) is parametrized by the simula-
tor S, the adversary A = (A0,A1), the compiler Φ, the set of corrupt manufacturers
C, the original circuit Γ with initial memory M1, and some value ` ∈ N.
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1. f ← S(1κ, 〈Γ〉,Φ,A, C, `): Given as input a description of the original circuit,
of the compiler and of the adversary, the subset of corrupt manufacturers,
and the parameter ` ∈ N, the simulator specifies an arbitrary polynomial-time
computable function f : {0, 1}∗ → {0, 1}`.

2. SA,Γ[M1](·)(1κ, L) : The simulator takes as input leakage L = f(M1), and is
given oracle access to adversary A = (A0,A1) and to the original circuit Γ
with private memory M1. We remark that the simulator is restricted to be
fully black-box. In particular, S only accesses the modified sub-components
returned by A0 in a black-box way (i.e., without knowing their description).

Definition 36 (Security). We say that a (ρ,m)-outsourcing circuit compiler Φ is
(`, t)-secure if the following conditions are met.

(i) Non-triviality: ρ < 1, for sufficiently large values of κ ∈ N.

(ii) Simulatability: For all C ⊆ [m] of size at most t and for all PPT adversaries
A, for all circuits Γ, and for all initial values of the memory M1 ∈ {0, 1}∗,
there exists a simulator S with running time poly(|A|, |Γ[M1]|) such that

{RealA,Φ,C,Γ,M1(κ)}κ∈N ≈c {IdealS,A,Φ,C,Γ,M1,`(κ)}κ∈N .

We observe that the above definition is only interesting for small values of `
(as, e.g., it becomes trivial in case ` = |M1|). Also notice that the non-triviality
condition demands that the ratio between the size of the sub-components of the
compiled circuit built in-house, and the size of the original circuit, should be less than
one. This is necessary, as otherwise a manufacturer could simply produce the entire
circuit by itself, without the help of any off-shore facility13. Clearly, the smaller ρ
the better, as this means that a large fraction of the original circuit production can
be outsourced.

Undetectability

We formally define what it means for an adversarial strategy to be undetectable
by all black-box polynomial-time tests. Informally, this means that it is hard to
distinguish the output of the original circuit from the output of the compiled circuit
(after the outsourced sub-components have been maliciously modified). Importantly,
the latter has to hold even if the testing strategy knows the initial content of the
private memory and the description of all sub-components in the compiled circuit.

For simplicity, we give the definition in the case of a single manufacturer (i.e.,
m = 1); a generalization to the case m ≥ 2 is immediate. The formalization borrows
ideas from similar definitions in the setting of subversion (cf. Section 4.2) and
algorithm-substitution attacks [BPR14,BJK15].

13We note however, that this definition can still make sense even in some cases where ρ > 1. This
can be, for instance, when a circuit designer does not have access to the technology necessary to
manufacture the entire circuit by itself.
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Definition 37 (Undetectability). Let Φ be an outsourcing circuit compiler, and Γ
be a circuit. We say that an adversary A is undetectable for Γ w.r.t. Φ if for all
PPT algorithms Test there exists a negligible function ν : N→ [0, 1] such that, for
all initial values of the memory M1, we have that P [Test wins] ≤ 1/2 + ν(κ) in the
following game:

1. The challenger picks b←$ {0, 1}, runs (Γ̂, (Γ̂1, . . . , Γ̂n),M, I) ← Φ(Γ), and
returns (M1, 〈Γ〉, 〈Γ̂〉, (〈Γ̂1〉, . . . , 〈Γ̂n〉),M, I) to Test.

2. Let Γ̂′ be the circuit implicitly defined by the sub-components {Γ̂i}i∈[n]\I ∪
{Γ̂′i}i∈I together with the mapping functionM, where {Γ̂′i}i∈I ← A(1κ, {〈Γ̂i〉}i∈I ,
〈Γ〉, 〈Γ̂〉).

3. Algorithm Test, can ask polynomially many queries of the type Xi. Upon input
such query, the answer from the challenger depends on the value of the bit b:

• In case b = 0, the output is Yi where (Yi,Mi+1)←$ Γ[Mi](Xi).
• In case b = 1, the output is Yi where (Yi,Mi+1)←$ Γ̂′[Mi](Xi).

4. Algorithm Test outputs a bit b′, and wins iff b′ = b.

5.3.2 Compilers based on VC

In this section we build secure outsourcing compilers that work for any circuit, in
the presence of a single malicious manufacturer. The compilers are based on any
verifiable computation (VC) scheme (satisfying certain properties) for the function
computed by the underlying circuit.

We start by recalling the basic definitions for VC schemes. Next, we describe
our first compiler, which requires a VC scheme satisfying input privacy. Still in this
Section, we describe our second compiler, which can be instantiated with non-input-
private VC schemes; our second compiler requires that once the first invalid output is
produced, the compiled circuit overwrites its entire memory with the all-zero string
and “self-destructs.” As we show, this restriction is necessary. Finally, towards the
end of this Section we discuss concrete instantiations of our compilers, based on
state-of-the-art research on verifiable computing.

Prelude: Verifiable Computation

A verifiable computation scheme allows for a client to outsource the computation of
a function to a (untrusted) server; the server produces a proof of correctness along
with the output of the function. The client checks the correctness proof to decide
whether the output provided by the server is accepted or not.

Definition 38 (Verifiable Computation). Let F be a function. A VC scheme
VC = (KeyGen,ProbGen,Compute,Verify) for function F consists of the algorithms
described below.

• (SK ,PK )← KeyGen(F , κ) : The (randomized) key generation algorithm takes
as input the function F and the security parameter κ, and outputs a public key
PK and a secret key SK .
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• (ΣX ,VKX) ← ProbGenSK (X) : The (randomized) problem generation algo-
rithm takes as input the value X and uses the secret key SK to compute an
encoding ΣX of X and a secret verification key VKX .

• ΣY ← ComputePK (ΣX) : The (deterministic) compute algorithm takes as input
the encoded value ΣX and uses the public key PK to compute an encoding of
Y = F(X).

• Y ← VerifySK (VKX ,ΣY ) : The (deterministic) verify algorithm takes as input
the verification key VKX and the value ΣY ; it uses the secret key SK and
VKX to compute a value Y ∈ {0, 1}∗ ∪ {⊥}, where symbol ⊥ denotes that the
algorithm rejects the value ΣY .

A typical VC scheme needs to satisfy some properties that we formalize below.

Correctness. A VC scheme is correct if the ProbGen algorithm produces problem
instances that allow for a honest server to successfully compute values ΣY such that
Y = F(X).

Definition 39 (Correctness for VC schemes). Let VC be a VC scheme for some
function F . We say that VC is correct if for all values X the following holds:

P
[
Y = F(X) : (SK ,PK )← KeyGen(F , κ); (ΣX ,VKX)← ProbGenPK (X)

ΣY ← ComputePK (ΣX);Y ← VerifySK (VKX ,ΣY )

]
= 1.

Soundness. A VC scheme is sound if no malicious server can “trick" a client into
accepting an incorrect output, i.e, some value Y such that Y 6= F(X). We require
this to hold even in the presence of so-called verification queries [FGP14].

Definition 40 (Soundness for VC schemes). Let VC be a VC scheme for some
function F . We say that VC is sound if for all PPT adversaries A there exists some
negligible function ν : N→ [0, 1] such that P [A wins] ≤ ν(κ) in the following game.

1. The challenger runs (SK ,PK) ← KeyGen(F , κ) to obtain the secret key SK
and the public key PK , and sends PK to A.

2. Adversary A can make the following two types of queries to the challenger, that
can be carried out polynomially many times in any order and in an adaptive
way.

(i) Adversary A can specify an input Xi; the challenger computes (VK i,Σi)←
ProbGenSK (Xi) and sends Σi to A.

(ii) Adversary A can specify verification queries (i, Σ̂); the challenger computes
Y = VerifySK (VK i, Σ̂) and returns 1 if Y 6= ⊥, otherwise returns 0.

3. Eventually, adversary A will output a pair (i∗,Σ∗); we say that A wins iff
Y ∗ 6= F(Xi∗) and Y ∗ 6= ⊥, such that Y ∗ = VerifySK (VK i∗ ,Σ∗).
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Input privacy. A VC scheme is input-private if no server can learn the input
value X that the function is being computed on.

Definition 41 (Input-privacy for VC schemes). Let VC be a VC scheme for some
function F . We say that VC is input private if for all PPT adversaries A there exists
some negligible function ν : N→ [0, 1] such that P [A wins] ≤ ν(κ) in the following
game.

1. The challenger runs (SK ,PK) ← KeyGen(F , κ) to obtain the secret key SK
and the public key PK , and sends PK to A.

2. Adversary A can make the following two types of queries to the challenger, that
can be carried out polynomially many times in any order and in an adaptive
way.

(i) Adversary A can specify an input Xi; the challenger computes (VK i,Σi)←
ProbGenSK (Xi) and sends Σi to A.

(ii) Adversary A can specify verification queries (i, Σ̂); the challenger computes
Y = VerifySK (VK i, Σ̂) and returns 1 if Y 6= ⊥, otherwise returns 0.

3. Adversary A chooses two values X0 and X1 and sends them to the challenger.

4. The challenger samples a random bit b←$ {0, 1} and computes (VK ∗,Σ∗)←
ProbGenSK (Xb) forwarding Σ∗ to A.

5. Adversary A can still specify to the challenger the queries described above,
including special verification queries for the verification key VK ∗.

6. Finally, A outputs a bit b′; we say that A wins if and only if b = b′.

Outsourceability. A VC scheme is outsourceable if the time to encode the input
plus the time to run a verification is smaller than the time to compute the function
itself.

Definition 42 (Outsourceability for VC schemes). A VC scheme can be outsourced
if it allows efficient generation and efficient verification. This means that for any X
and any ΣY the time (or circuit size) required for ProbGenSK (X) plus the time (or
circuit size) required for VerifySK (VK ,ΣY ) is o(T ), where T is the time (or circuit
size) required to compute F(X).

VC without input-privacy. The above definitions can be adapted to cast VC
schemes without input-privacy, i.e schemes where the server is allowed to learn the
input value X used by the client. For such VC schemes, algorithm ProbGen returns
the value X in the clear along with the secret verification key VKX ; the correctness,
soundness and outsourceability definitions can easily be adapted to this setting.
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First Compiler

In this section we construct an outsourcing circuit compiler by using a VC scheme that
satisfies the properties of correctness, soundness, input-privacy and outsourceability.
Let Γ be a circuit. The idea is to invoke a VC scheme for the function F corresponding
to the functionality computed by Γ. The compiled circuit will consist of four main
components Γ̂ProbGen, Γ̂Compute, Γ̂Verify, and Γ̂$. The first three components are the
circuit representations of the algorithms ProbGen, Compute and Verify corresponding
to the underlying VC scheme; such components hard-wire keys (SK ,PK ) generated
using algorithm KeyGen. The fourth component samples the random coins Ri to be
used during each invocation of the circuit.

The production of component Γ̂Compute will then be outsourced to a single
untrusted facility, whereas all other components are built in-house (as their im-
plementation needs to be trusted). Notice that the implementation of algorithm
KeyGen can be thought of as a pre-processing stage that runs only once (and could
be carried out in software).

An important observation is that the size of circuit Γ̂Verify and Γ̂ProbGen is inde-
pendent, and much smaller, than the size of circuit Γ̂Compute. As discussed in the
introduction, the size of Γ̂$ can also be considered to be constant (consisting only of
a few gates). We describe our first compiler below in more details.

The compiler Φ1
VC. Let Γ be a circuit, and VC = (KeyGen,ProbGen,Compute,

Verify) be a VC scheme for the function F implemented by Γ. Our first compiler is
depicted in Fig. 5.5, and can be described as follows.

1. First run (SK ,PK )← KeyGen(F , κ) once, obtaining the pair of keys (SK ,PK ).

2. Let Γ̂Memory be a circuit component consisting only of memory gates, as needed
by the original circuit Γ, storing the initial value of the private memory M1.

3. Let Γ̂$ be a circuit outputting random coins R̂i (as needed in each invocation
of the compiled circuit).

4. Define a component for each function ProbGen, Compute and Verify of the VC
scheme as explained below.

• Γ̂ProbGen: This component embeds the secret key SK , and it takes three
inputs; the input Xi, the (current) private memory Mi, and random
coins R̂i := Ri||R′i. It implements function ProbGenSK (Xi||Mi||Ri;R′i),
that produces two outputs: an encoding ΣXi,Mi,Ri , and a verification key
VKXi,Mi,Ri .

• Γ̂Compute: This component embeds the public key PK , and it takes as input
the encoding ΣXi,Mi,Ri . It implements function ComputePK (ΣXi,Mi,Ri),
that produces the encoding ΣYi,Mi+1 of (Yi,Mi+1) = F(Xi,Mi;Ri) as
output.

• Γ̂Verify: This component embeds the secret key SK , and it takes two
inputs; the encoding ΣYi,Mi+1 and the verification key VKXi,Mi,Ri . It im-
plements function VerifySK (VKXi,Mi,Ri ,ΣYi,Mi+1), to produce the output
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Figure 5.5. The description of compiler Φ1
VC. The green parts (i.e., Γ̂ProbGen, Γ̂Verify, and

Γ̂$) need to be built in-house, while the production of the red part (i.e., Γ̂Compute) can be
outsourced; the blue part (i.e., KeyGen) is built only once (not necessarily in hardware).
The dotted line depicts the circuit boundaries.

Yi ∈ {0, 1}∗ ∪ {⊥}, and eventually update the circuit private memory to
Mi+1.

5. The output of Φ1
VC is defined as follows. The first output is a (description of

the) compiled circuit Γ̂ as depicted in Fig. 5.5.
The auxiliary information α consists of the components Γ̂ProbGen, Γ̂Compute, Γ̂Verify,

Γ̂Memory, and Γ̂$, the mapping functionM that describes the physical connec-
tions between such components (i.e., the arrows in Fig. 5.5), and the index set
I = {2} specifying the component Γ̂Compute as a candidate for outsourcing.

The theorem below states that the compiler from Fig. 5.5 satisfies our strongest
security notion (i.e., Definition 36 with ` = 0), provided that the underlying VC
scheme is correct, sound, input-private, and outsourceable.

Theorem 16. Let Γ be an arbitrary circuit and let VC be a verifiable computation
scheme for the function F computed by Γ, satisfying the properties of correctness,
soundness, input-privacy and outsourceability. Then the compiler Φ1

VC is a correct,
(0, 1)-secure (o(1), 1)-outsourcing circuit compiler.

Remark 1 (On outsourcing memory gates). In the compiler depicted in Figure 5.5,
Γ̂$ is being built in-house. In order to outsource private memory to a potentially
malicious manufacturer we modify the above compiler as follows: instead of storing
in Γ̂$ the value Mi in plaintext, we store c← AESK′(Mi), where c is the encryption
of Mi using a symmetric, semantically secure authenticated encryption scheme, with
secret key SK ′. Moreover, Γ̂ProbGen is modified such that when receiving the private
memory value c, it first decrypts it using SK′ and then executes the original circuit
Γ̂ProbGen on the resulting plaintext. We also substitute Γ̂Verify so that it outputs the
encryption of Mi+1, under SK ′. This modification enables the simulator to execute
the circuit using the all-zeros bit-string as the initial memory value, and security
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follows by the semantic security of the encryption scheme. Finally, whenever the
decryption of c gives ⊥ the circuit output is ⊥.

Proof idea. We give an intuition for the security proof. Correctness of the compiler
and the fact that ρ = o(1) follow immediately, respectively, from the correctness and
the outsourceability of the underlying VC scheme. As for security, we need to build
a simulator S that is able to “fake” the real experiment for all adversaries A, for all
circuits Γ, and for all initial memory values M1. The simulator runs compiler Φ1

VC
upon input Γ, forwards the circuit component Γ̂Compute to A obtaining a modified
component Γ̂′Compute, and re-assembles the compiled circuit Γ̂′ plugging together all
the required components. Thus, upon input a query Xi from A, the simulator simply
runs Γ̂ upon input Xi and using some fixed memory (e.g., the all-zero string); if the
output is invalid, S answers the query with ⊥, and otherwise it answers the query
by using black-box access to the original circuit.

Intuitively, by soundness of the underlying VC scheme, whenever the output of
Γ̂[Mi](·) is not ⊥, such value must be equal to the output of the function F(·,Mi).
On the other hand, the fact that the output is valid or not must be independent
of the actual memory used for the computation, as otherwise one could break the
input-privacy property of the VC scheme. With this in mind, on can show the
indistinguishability between the real and the simulated experiment using a hybrid
argument.

Proof. We start by showing that the outsourcing ratio parameter ρ of the compiler
Φ1
VC is always smaller than 1, for sufficiently large values of the security parameter

κ, thus meeting the non-triviality condition.

Claim 16.1. ρ = o(1).

Proof. The non-triviality requirement from Definition 36 states that

ρ = |Γ̂ProbGen|+ |Γ̂Verify|+ |Γ̂$|+ |Γ̂Memory|
|Γ| < 1.

The claim is that ρ = o(1), i.e. limκ→∞
ρ
1 = 0. By the outsourceability property of the

VC scheme we know that |Γ̂ProbGen|+|Γ̂Verify| = o(|Γ|), i.e. limκ→∞
|Γ̂ProbGen|+|Γ̂Verify|

|Γ| = 0.
By substituting the expression for ρ, and by using the fact that the size of Γ̂$ can
assumed to be constant and that the original and the compiled circuit contain the
same number of memory gates, we obtain:

lim
κ→∞

(|Γ̂ProbGen|+ |Γ̂Verify|+ |Γ̂$|+ |Γ̂Memory|)/|Γ|
1 = 0.

This shows that function ρ converges to 0. As the size of each component is
monotonously increasing with the security parameter, for sufficiently large κ, the
outsourcing ratio ρ will always be smaller than 1, as desired.

Claim 16.2. The compiler Φ1
VC satisfies correctness.

Proof. The correctness of the compiler Φ1
VC follows immediately from the correctness

property of the underlying VC scheme.
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We proceed to prove security of Φ1
VC. We need to build a simulator S that is

able to “fake” experiment Real for all adversaries A, for all circuits Γ, and for all
initial memory values M1. A description of the simulator follows.

• Run the compiler Φ1
VC(Γ) supplying (a description of) the original circuit

Γ; the output is (a description of) the compiled circuit Γ̂, and the auxiliary
information α := ((Γ̂ProbGen, Γ̂Compute, Γ̂Verify, Γ̂Memory, Γ̂$),M, {2}).

• The description of component Γ̂Compute is sent to adversary A together with
the descriptions of Γ and Γ̂.

• Adversary A produces the component Γ̂′Compute (that may be malicious) and
sends it to the simulator; the circuit Γ̂′ is assembled using the components
(Γ̂ProbGen, Γ̂′Compute, Γ̂Verify, Γ̂Memory, Γ̂$), via the mapping functionM.

• Upon input Xi from A, run (Yi, M̃i+1) ← Γ̂′[0µ](Xi), where µ := |M1|; if
Yi = ⊥ then forward ⊥ to A, otherwise query Xi to oracle Γ[M1](·) and
forward the output to A.

Let us write R and S for the distribution of the random variables in experiment
Real and Ideal of Definition 36. Recall that these variables are parametrized by
adversary A, simulator S, initial memory M1, compiler Φ1

VC , and circuit Γ, but we
omit explicitly writing all these parameters to simplify the exposition.14 We consider
a new experiment R′ that is exactly the same as R, except that for all queries
Xi such that (Y ′i ,Mi+1) ← Γ̂′[Mi](Xi) with Y ′i 6= ⊥, the experiment computes
(Yi,Mi+1)← F(Xi,Mi) and outputs Yi.

The claim below shows that experiment R and R′ are computationally indistin-
guishable.

Claim 16.3. For all PPT adversaries A, and for all PPT distinguishers D, there
exists a negligible function ν : N→ [0, 1] such that ∆D(R; R′) ≤ ν(κ).

Proof. Let q ∈ poly(κ) be the number of input queries asked by A to its oracle,
and let us define an event E that becomes true whenever there is some index
i∗ ∈ [q] such that in experiment R′ we have Yi∗ 6= Y ′i∗ . Then, by Lemma 1, we have
that ∆D(R; R′) ≤ ∆ (R; R′|¬E) + P [E]. Note that the distributions R and R′,
conditioned on event E not happening are exactly the same. We proceed to show
that the probability of event E is negligible.

Let us assume that there exists some circuit Γ, some initial memory M1 and
a PPT adversary A provoking event E with non-negligible probability. We build
a PPT adversary A′ that uses A in order to break the soundness property of the
underlying VC scheme (cf. Definition 40).

Adversary A′(M1,F ,Γ,Φ):

1. Receive PK from the challenger, where (SK ,PK )← KeyGen(F , κ).
14We also omit to mention the set of corrupt manufacturers C, as in this case there is a single

malicious manufacturer.
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2. Run (Γ̂,M1, α) ← Φ(Γ,M1), and send (the description of) circuit
components (Γ̂Compute,Γ, Γ̂) to A. Adversary A produces the modi-
fied component Γ̂′Compute and sends it to A′.

3. For all i ∈ [q], upon input query Xi from A, do the following.
• Sample random coins Ri, create the string Zi := Xi||Mi||Ri

and send it to the challenger as an encoding query. In response
the challenger computes (VKZi ,ΣZi) ← ProbGenSK (Zi) and
sends back the encoding ΣZi to A′.

• Run ΣY ′i ,Mi+1 = Γ̂′Compute(PK ,ΣZi) and send a verification
query (i,ΣY ′i ,Mi+1) to the challenger; the answer from the chal-
lenger is a verification bit d. If d = 0, then reply with ⊥,
otherwise compute (Yi,Mi+1) = F(Mi, Xi;Ri) and reply with
Yi.

4. Finally, pick a random i∗ ∈ [q] and output the pair (i∗,ΣY ′
i∗

).

For the analysis, we note that the above simulation is perfect. In particular
the outputs seen by A retain exactly the same distribution as in experiment R′.
Now A provokes event E with non-negligible probability, so there exists some index
i∗ ∈ [q] such that Yi∗ is different from Y ′i∗ where (Y ′i∗ ,Mi∗+1)← Γ̂′[Mi∗ ](Xi∗). Since
A′ guesses the right index i∗ with probability 1/q, we obtain that A′ wins the
soundness game with non-negligible probability 1

q · P [E]. This contradicts the
soundness property of the underlying VC scheme, and thus concludes the proof of
the claim.

Claim 16.4. For all PPT adversaries A, and for all PPT distinguishers D, there
exists a negligible function ν ′ : N→ [0, 1] such that ∆D(R′; S) ≤ ν ′(κ).

Proof. Let q ∈ poly(κ) be the number of input queries asked by A to its oracle. For
an index i ∈ [q] consider the hybrid experiment Hi that answers the first i queries
as in R′ and all the subsequent queries as in S. We note that experiments Hi−1 and
Hi only differ in how the output is computed in position i, and that H0 ≡ S and
Hq ≡ R′.

We now show that for all circuits Γ, all initial memories M1, and all PPT
adversaries A, each pair of adjacent hybrids Hi−1 and Hi are computationally
indistinguishable. Fix some i ∈ [0, q], and assume that there exists some circuit
Γ, some initial memory M1, a PPT adversary A, and a PPT distinguisher D that
distinguishes between the pair of hybrids Hi−1 and Hi. We build an adversary A′
that uses (A,D) in order to break the input-privacy property of the underlying VC
scheme (cf. Definition 41).

Adversary A′(M1,F ,Γ,Φ, i):

1. Receive PK from the challenger, where (SK ,PK )← KeyGen(F , κ).
2. Run (Γ̂, α)← Φ(Γ), and send (the description of) circuit components

(Γ̂Compute,Γ, Γ̂) to A. Adversary A produces the modified component
Γ̂′Compute and sends it to A′.
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3. Upon input query Xj from D, such that j 6= i, answer as follows:
• Sample random coins Rj . If j < i create the string Zj :=
Xj ||Mj ||Rj , else create the string Zj := Xj ||0µ||Rj .

• Send Zj to the challenger as an encoding query. In response
the challenger computes (VKZj ,ΣZj ) ← ProbGenSK (Zj) and
sends ΣZj to A′.

• Run ΣYj ,Mj+1 = Γ̂′Compute(PK ,ΣZj ), and send a verification
query (j,ΣYj ,Mj+1) to the challenger.

• The challenger replies with a decision bit d; if d = 0 then return
⊥, otherwise compute (Yj ,Mj+1) = F(Mj , Xj ;Rj) and return
Yj .

4. Upon input query Xi from A, answer as follows:
• Sample random coinsRi, and create two strings Z∗0 := Xi||Mi||Ri

and Z∗1 := Xi||0µ||Ri.
• Send Z∗0 and Z∗1 to the challenger as challenge inputs for the

input-privacy game; the challenger replies with ΣZ∗ (which
corresponds to the encoding of either Z∗0 or Z∗1 ).

• Run ΣY ∗ = Γ̂′Compute(PK ,ΣZ∗) and send a verification query
(i,ΣY ∗) to the challenger; the challenger replies with a decision
bit d. If d = 0 then return ⊥, otherwise compute (Yi,Mi+1) =
F(Mi, Xi;Ri) and return Yi.

5. Finally, output whatever D outputs.

For the analysis, we note that the above simulation is perfect. In particular,
depending on Z∗ being either an encoding of Z∗0 or Z∗1 the view of (A,D) is identical
to the view in either experiment Hi−1 or Hi. Hence, A′ retains the same advantage
as (A,D) which contradicts input-privacy of the underlying VC scheme. We conclude
that there exist negligible functions ν ′, ν ′′ : N→ [0, 1] such that

∆D(R′; S) ≤
q∑
i=1

∆D(Hi−1; Hi) ≤ q · ν ′(κ) ≤ ν ′′(κ),

as desired.

The statement now follows by Claim 16.3 and Claim 16.4, and by the triangle
inequality, as

∆D(R; S) ≤ ∆D(R; R′) + ∆D(R′; S) ≤ ν(κ) + ν ′(κ).

This finishes the proof.

Second Compiler

In this section we construct an outsourcing circuit compiler by using any VC scheme
that satisfies the properties of correctness, soundness and outsourceability. The
construction follows the same ideas of compiler Φ1

VC (cf. Section 5.3.2), with two
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Figure 5.6. The description of compiler Φ2
VC. Notice that component Γ̂ProbGen does not

need to hide its input, and that component Γ̂Verify implements the self-destruct feature.
The dotted line depicts the circuit boundaries.

main differences. First, as we rely on a VC scheme without input-privacy, the
component Γ̂ProbGen now outputs the values Xi, Mi, Ri in the clear. Second, the
component Γ̂Verify needs to implement a special “self-destruct” feature: The first
time the component returns the special symbol ⊥, the private memory is overwritten
with the all-zero string.

As we argue later in this section, the self-destruct feature is necessary, in that,
without such a feature, generic attacks against our compiler are possible, possibly
exposing the entire private memory in an undetectable manner.

The compiler Φ2
VC. Let Γ be a circuit, and VC = (KeyGen,ProbGen,Compute,

Verify) be a VC scheme for the function F implemented by Γ. The description of the
compiler Φ2

VC(Γ) can be found in Fig. 5.6. The theorem below establishes that such
a compiler is secure, provided that the original circuit to be produced is resilient to
a logarithmic (in the security parameter) amount of leakage on its private memory.

Theorem 17. Let Γ be an arbitrary circuit and let VC be a verifiable computation
scheme for the function F computed by Γ, satisfying the properties of correctness,
soundness and outsourceability. Then the compiler Φ2

VC is a correct (log(q) + 1, 1)-
secure (o(1), 1)-outsourcing circuit compiler, where q is the number of oracle queries
asked by adversary A in Definition 36.

Proof idea. We give an intuition for the security proof. As for our first compiler,
correctness of the compiler and the fact that ρ = o(1) follow readily from the
correctness and the outsourceability properties of the underlying VC scheme. As for
security, we need to build a simulator S that is able to “fake" the real experiment
for all adversaries A, for all circuits Γ, and for all initial memory values M1. The
simulator S is allowed to define an arbitrary polynomial-time computable function
f : {0, 1}∗ → {0, 1}log(q)+1 that leaks a logarithmic amount of information regarding
the initial private memoryM1. Intuitively, the function f hard-wires the randomness
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for running the entire real experiment with adversary A; note that this randomness
includes the randomness for the compiler, and the random coin tosses of A. The
output of the function consists of: (i) a predicate abort which tells whether there
was some round where the output of circuit Γ̂′ differs from the output of the original
circuit Γ; (ii) the index q∗ corresponding to the round where self-destruct was
triggered.

In case abort = 1 the simulator S simply gives up and aborts. Otherwise, it
emulates the real experiment with the same randomness hard-wired in the function
f , answering all the queries from A up until round q∗ − 1 using black-box access
to the original circuit, whereas all further queries are answered with ⊥. On the
one hand, this is a perfect simulation as long as abort = 0. On the other hand, the
soundness property of the underlying VC scheme ensures that abort = 0 with all but
a negligible probability. The proof follows.

Proof. The proof of the non-triviality and the correctness condition are similar to
the proofs of Claim 16.1 and Claim 16.2 respectively, and are therefore omitted.

We proceed to prove the security of Φ2
VC. We need to build a simulator S

that is able to “fake" experiment Real for all adversaries A, for all circuits Γ,
and for all initial memory values M1. The simulator S is allowed to define an
arbitrary polynomial-time computable function f : {0, 1}∗ → {0, 1}log(q)+1 that leaks
a logarithmic amount of information regarding the initial private memory M1. The
function f is defined as follows.

• Sample all random coins for experiment Real, including the random coins ρA
of adversary A, and the random coins ρΦ of the compiler Φ.

• Function f takes as input the memory M1 and the sampled random coins
ρ = (ρA, ρΦ); note that f can completely simulate experiment Real using the
memory M1 and the sampled randomness ρ.

• For all i ∈ [q] function f runs simultaneously the circuits Γ̂′[Mi](Xi) and
Γ[Mi](Xi) using the initial memory M1 and adversary A’s randomness to
sample the inputs Xi’s.

• Define the event E which becomes true in case there exists some index i∗ ∈ [q]
such that Γ̂′[Mi∗ ](Xi∗) 6= Γ[Mi∗ ](Xi∗).

• The outputs of function f are

– abort ∈ {0, 1}: a predicate that is 1 if event E happens;

– q∗ ∈ [q]: the index corresponding to the round in which a self-destruct is
triggered (if any).

The claim below shows that the probability of event E happening is negligible.

Claim 17.1. For all PPT adversaries A, the probability that f returns abort = 1 is
negligible.
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Proof. Let us assume that there exists some circuit Γ, some memory M1, and a PPT
adversary A that provokes an abort = 1 with non-negligible probability. We build a
PPT adversary A′ that uses A to break the soundness property of the underlying
VC scheme (cf. Definition 40). The description of A′ follows.

Adversary A′(M1,F ,Γ,Φ):

1. Receive PK from the challenger, where (SK ,PK )← KeyGen(F , κ).
2. Run (Γ̂, α) ← Φ(Γ) and send (the description of) circuit compo-

nents Γ̂Compute, Γ and Γ̂ to A. Adversary A produces the modified
component Γ̂′Compute and sends it to A′.

3. For all i ∈ [q], upon input query Xi answer as follows.

• Sample random coins Ri, define the string Zi := Xi||Mi||Ri,
and run ΣYi,Mi+1 = Γ̂′Compute(PK , Zi).

• Send a verification query (i,ΣYi,Mi+1) to the challenger, receiv-
ing back a verification bit d. If d = 0 then return ⊥, and set
Mi+1 := 0µ; otherwise, compute (Yi,Mi+1) = F(Mi, Xi;Ri)
and return Yi.

4. Finally, pick a random i∗ ∈ [q] and output the pair (i∗,ΣYi∗ ,Mi∗+1).

For the analysis, note that the above simulation is perfect. In particular, the
first time a verification query is rejected, the reduction returns ⊥ and overwrites the
private memory with the all-zero string. By definition of the event E, we know that
there exists an index i∗ ∈ [q] such that the value Yi∗ corresponding to the encoding
ΣYi∗ ,Mi∗+1 is different from the value Yi∗ computed via F(Mi∗ , Xi∗).

Since A′ guesses the right index i∗ with probability 1/q, we conclude that A′
breaks the soundness property of the underlying VC scheme with non-negligible
probability 1

q · P [E]. This concludes the claim proof.

We proceed to describe how the simulator S uses the obtained leakage in order
to fake the distribution in the real experiment (when run with the same randomness
ρ initially sampled by the simulator to define the leakage function f).

• After getting the auxiliary input (abort, q∗), check if abort = 1 and in this case
stop with output “simulation failed.” Otherwise, proceed to the next step.

• Upon input query Xi, such that i < q∗, simply forward the query Xi to oracle
Γ[M1](·) and output the answer Yi obtained from the oracle.

• Upon input query Xi, such that i = q∗, output ⊥ and initialize the memory
M̃i := 0µ.

• Upon input query Xi, such that i > q∗, run (Yi, M̃i+1) = Γ̂′[M̃i](Xi) and
output Yi.

The claim below shows that, whenever abort = 0, the above simulation is perfect.
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Claim 17.2. Whenever abort = 0, for all circuits Γ, all initial memories M1,
and for all PPT adversaries A, the output produced by the above simulator S is
identically distributed to the output of the experiment RealA,Φ,Γ,M1(κ) (using the
same randomness as sampled by S).

Proof. Notice that the simulator implements the self-destruct feature (overwriting
the private memory with the all-zero string) at round q∗; this is exactly what happens
in the real experiment (conditioning on the randomness ρ used to define the leakage
function being the same as the one used in the experiment). Moreover, all queries
before round q∗ are answered by running the original circuit Γ. Again, this is a
perfect simulation (as abort = 0). The claim follows.

Let us write R for the randomness space of experiment RealA,Φ,Γ,M1(κ).15 For
ρ ∈ R let us write RealA,Φ,Γ,M1(κ)[ρ] to denote the outcome of the real experiment
when using the randomness ρ; similarly, let us write IdealS,A,Φ,Γ,M1,`(κ)[ρ] for the
outcome of the ideal experiment when using the randomness ρ. Whenever abort = 0,
by the above claim, we have that for any ρ:

RealA,Φ,Γ,M1(κ)[ρ] = IdealS,A,Φ,Γ,M1,`(κ)[ρ].

On the other hand, by Claim 17.1, for a random ρ we have that abort = 1 happens
only with a negligible probability. It follows that for all PPT distinguishers D there
exists a negligible function ν : N→ [0, 1] such that

|P [D(RealA,Φ,Γ,M1(κ)) = 1]− P [D(IdealS,A,Φ,Γ,M1,`(κ)) = 1]| ≤ ν(κ),

The case of memory outsourcing is identical to that of the first compiler and we
refer the reader to Remark 1.

Necessity of self-destruct. We show that the self-destruct feature is necessary
for the security of compiler Φ2

VC by presenting an undetectable attack (as per
Definition 37) against the circuit Γ̂′ produced by compiler Φ2

VC . The attack, which
is described in details in Fig. 5.7, works for a large class of circuits, and leaks the
entire initial private memory M1 embedded in the compiled circuit.

Theorem 18. Let Γ be any circuit with input size n = ω(log κ) and let Φ2
VC be

the compiler from Fig. 5.6 without the self-destruct capability. Then, the attack A∗
described in Fig. 5.7 is undetectable for Γ w.r.t. Φ2

VC, and leaks the entire initial
private memory M1.

Proof. The second part of the statement follows directly by observing that knowledge
of the trapdoor information τ allows to learn the value M1 with overwhelming
probability.

We proceed to show undetectability. Let G be the undetectability game described
in Definition 37, where the adversary A is chosen to be adversary A∗ from Fig. 5.7.

15In what follows we omit to parametrize the experiments by the set C of corrupt manufacturers,
as we are considering the case of a single malicious manufacturer.
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Consider the game G0, an identical copy of game G when b = 0, and consider the
game G1 an identical copy of game G when b = 1. Abusing notation, let us write
G0 and G1 for the distribution of the random variables corresponding to algorithm
Test’s view in games G0 and game G1 respectively. For an index i ∈ [q] consider
the hybrid game Hi that answers the first i queries as in G0 and all the subsequent
queries as in G1. We note that game Hi−1 and Hi only differ in position i, and that
H0 ≡ G1 and Hq ≡ G0.

We claim that, for all i ∈ [q], it holds Hi−1 ≈c Hi. Fix some index i, and
define the event E that the i-th query Xi happens to be equal to the secret value
τ embedded in the modified component Γ̂Compute (as described in Fig. 5.7). By
Lemma 1, ∆ (G0; G1) ≤ ∆ (G0; G1|¬E) + P [E]. Clearly, conditioned on event E
not happening, the distributions of game G0 and G1 are identical; this is because
in such a case the modified component Γ̂′Compute behaves exactly like the original
component Γ̂Compute.

On the other hand, if |τ | = ω(log κ), the probability of event E is negligible.
We conclude that for all PPT distinguishers D there exists a negligible function
ν : N→ [0, 1] such that

∆D(G0; G1) ≤
q∑
i=1

∆D(Hi−1; Hi) ≤ ν(κ).

Concrete Instantiations

The area of verifiable computing has a long history in the cryptographic litera-
ture [BFLS91,Mic00,GKR08,GGP10]. We refer the reader to the excellent survey

Let Γ be any circuit with input size of n bits, and consider the compiled circuit Γ̂
produced by running Φ2

VC(Γ). Define the following adversarial strategy, aimed at
building a modified circuit component Γ̂′Compute that leaks the entire initial private
memory M1 when given some secret trapdoor information.

A∗(Xi,Mi, Ri):

1. Choose a random value τ , such that |τ | = n, and store it in a
memory location.

2. Upon the first run, duplicate and store the content of memory M1
into another memory location, and initialize a counter j := 0.

3. Upon input a tuple (Xi,Mi, Ri) such that Xi 6= τ , output ΣYi =
ComputePK (Xi,Mi, Ri). Otherwise, behave as follows:

• If M1[j] = 0, let ΣYi be the all-zero string.
• Else, compute ΣYi = Compute(Xi,Mi, Ri).
• Update counter j ← (j + 1) mod |M1| and output ΣYi .

Figure 5.7. Undetectable attack against compiler Φ2
VC (without the self-destruct capability).
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by Walfish and Blumberg [WB15] for a thorough introduction.
By now, several schemes and models for the problem of outsourcing computation

are known (see, among others, [AIK10,BHR12,BCCT12,BCG+13,JNO14,ACG+14]).
Below, we focus only on VC schemes suitable for the compilers described in this
section.

First compiler. For the compiler Φ1
VC, we need a VC scheme satisfying both

soundness and input-privacy (in the presence of verification queries). The only known
schemes meeting these requirements are the ones recently constructed by Fiore,
Gennaro, and Pastro [FGP14] (relying on fully homomorphic encryption [Gen09]).

Second compiler. For the compiler Φ2
VC , we need a VC scheme satisfying sound-

ness (in the presence of verification queries), but no input-privacy is required.
Therefore, we can instantiate this compiler using more efficient schemes based on
SNARKs [Mic00,GLR11,BCCT12,DFH12,BCI+13,BCCT13,BCG+13,GGPR13,
PHGR13,BCTV14,CFH+15,Gro16].

Extensions. While the compilers described in this section rely on non-interactive
VC schemes, it is easy to generalize our constructions to also work with interactive VC.
The difference is that the communication pattern between the components Γ̂Compute
and Γ̂Verify would consist of multiple sequential messages, before the values Yi and
Mi+1 are produced. VC schemes of this type were designed, e.g., in [GKR08,CMT12,
GKR15]. See also [WHG+16] for an excellent discussion on how to implement those
schemes in hardware.

5.3.3 Compiler based on MPC

In this section we present a compiler which is based on multi-party computation
(MPC) techniques, aiming to improve the efficiency of the resulting circuit at
the expense of achieving security in the weaker model where there are m ≥ 2
manufacturers, a t-fraction of which is malicious (for some threshold t ≤ m − 1).
Before presenting our compiler, we first revisit the core ideas of MPC, and then we
give a generic definition for MPC protocols in the client-server model, along the
lines of [Bea97].

MPC in the Client-Server Model

In MPC we consider p parties, where each party Pi, for 1 ≤ i ≤ p, possesses an input
Xi and they all wish to jointly compute the tuple (Y1, . . . , Yp) = F(X1, . . . , Xp),
where Pi receives Yi. In the client-server model, the parties are divided into two
categories: the parties that provide inputs and wish to receive the output of the
computation (clients), and those performing the computation (servers). A t-private
MPC protocol ensures that any adversary who controls up to t servers cannot leak
any information related to the private inputs of the clients, besides the information
that can be inferred by inspecting the output of the computation, and regardless of
the number of corrupted clients. In our compiler the circuit corresponding to the
code executed by the servers will be outsourced to a number of possibly malicious
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manufacturers, that may apply arbitrary modifications against the circuit compo-
nents. Thus, we require MPC protocols that are secure against active (malicious)
attackers. Additional properties that might be useful are the following:

1. Correctness: The protocol computes the correct output.

2. Output delivery: It guarantees that the honest parties will receive the output
of the computation.

3. Fairness: If at least one party learns the output, then, all the parties learn the
output.

4. Identifiable abort: Whenever the protocol terminates due to an abort message,
it is guaranteed that at least one malicious party will be caught (this might be
useful for deactivating adversarial circuit components).

The general idea behind the compiler is the following. Let Γ be a circuit implementing
some functionality F , and let ΠF be a t-private MPC protocol realizing the function
F . Then, assuming the number of malicious manufacturers is at most t < m, the
circuit Γ̂ will implement the code of ΠF , and each Γ̂i will implement the code of the
i-th server. Below we define the protocol framework that we are going to use for
the rest of this section. The idea is to describe any MPC protocol using its next
message function, denoted as Next.

Definition 43 (r-round protocols). Let C, S be sets of probabilistic interactive
Turing machines, with cardinalities p, m, respectively. An r-round protocol Π for
p clients and m servers is a tuple (C, S,Enc,Dec,Next), where Next = (Next1, . . . ,
Nextm), described as follows.

• Setup: Each client computes (X1
i , . . . , X

m
i )← Enc(Xi), and sends Xj

i to the
server indexed by j. Let inj := (Xj

1 , . . . , X
j
p), and τj := 0 (we assume that the

network is fully connected, still the properties of the communication channel
depend on the instantiation).

• Computation: For i ∈ [r]:

– If i 6= r, for j ∈ [m] execute (oj1, . . . , ojm, τ ′j) ← Nextj(inj , τj), send ojk,
k 6= j, to the server with index k. Set inj = (o1

j , . . . , o
m
j ), and τj = τ ′j.

– If i = r, for j ∈ [m] execute oj ← Nextj(inj , τj), and send oj to Dec.

• Output: Execute (Y1, . . . , Yp) ← Dec(o1, . . . , om), and send Yj to the client
with index j.

For any function F , the protocol computing F will be denoted by ΠF .

Informally, in the first step of the protocol execution, the clients encode their
inputs, as it is prescribed by Enc, and then the main computation begins. The
code executed by the servers at each round is defined by the function Next (the
next message function). Hence, in the i-th round, server Sj computes Nextj upon
the outputs and the state information τ produced by the other servers in round
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i − 1. One can also consider deterministic next message functions, assuming the
randomness is given as input in each round. Below, we formally define correctness
and privacy for MPC protocols.

Definition 44 (Correctness). Let F be a p-party functionality. We say that Π
realizes F with perfect (resp., statistical) correctness if for any input (X1, . . . , Xp),
the probability that the output delivered to the i-th client during the protocol execution
is different than Yi, is 0 (resp., negligible in λ), where (Y1, . . . , Yp) = F(X1, . . . , Xp)
for i ∈ [p].

Definition 45 ((t,m)-privacy). Let λ be the security parameter, p be the number
of parties (clients) and m be the number of servers, and let A be an adversary that
may corrupt any set of parties Ic ⊆ [p], and servers Is ⊂ [m], where |Is| ≤ t. We say
that the protocol Π realizes F with (t,m)-privacy if there exists a PPT algorithm S
such that for all sufficiently large λ ∈ N,

ViewIs,Ic(λ,X1, . . . , Xp) ≈c S(1κ, Ic, Is, (Xi, Yi)i∈Ic)

where ViewIs,Ic(λ,X1, . . . , Xp) denotes the joint view of the servers and clients in Is
and Ic, respectively, within an execution of the protocol upon inputs X1, . . . , Xp, and
(Y1, . . . , Yp) = F(X1, . . . , Xp).

The main idea behind the above definition is that the view of the attacker during
the protocol execution can be computed based on its own input and output only.

The Compiler

Let Γ be a circuit implementing the function F(M1, ·), where for any X and i ∈ N,
we have (Y,Mi+1) = F(Mi, X). Let ΠF = (C, S,Enc,Dec,Next) be an r-round
protocol realizing the function F , over a set of m servers with a single client. The
compiler produces (Γ̂, aux)← ΦΠF (Γ), where

• Γ̂ is the circuit that implements ΠF (depicted in Figure 5.8 for the case m = 2
and p = 1), having as a sub-circuit Γ̂Memory, which is a circuit consisting only
of memory gates, as needed by the original circuit Γ. During initialization,
Γ̂Memory stores the initial private memory value, M1.

• α = ((Γ̂1, . . . , Γ̂m+2),M, (I1, . . . , Im)), where

– Γ̂m+1 = Γ̂Enc and Γ̂m+2 = Γ̂Dec, i.e., the circuits Γ̂m+1 and Γ̂m+2 imple-
ment the encoder, Enc, and the decoer Dec, of ΠF , respectively.

– For i ∈ [m], Γ̂i is the circuit that implements the code of the i-th server, for
the entire execution of ΠF (r-rounds). Those circuits can be implemented
in a straightforward way using the next message function Nexti (cf. the
sub-components Γ̂1 and Γ̂2 in Figure 5.8).

– The mapping functionM describes the physical connections between the
circuits described above, and Ij , for j ∈ [m], specifies the components
that will be outsourced to the manufacturer with index j. In our case
Ij = {j}.
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Figure 5.8. The MPC compiler for the case of m = 2 outsourcing facilities (from which one
can be malicious). The components Γ̂1 and Γ̂2 can be outsourced, while the connectivity
between them and the remaining components are built in-house. The dotted line depicts
the circuit boundaries.

– In case the original circuit is randomized, in addition to the components
described above, Φ also outputs a circuit Γ̂$ producing random coins Ri
(as needed in each invocation of the circuit).

Our construction must be non-trivial (cf. Definition 36), thus the underlying
protocol Π must satisfy the following outsourceability property.

Definition 46 (Outsourceability of procotols). A protocol Π = (C, S,Enc,Dec,Next)
that realizes the function F can be outsourced if it satisfies the following condition:
The circuit computing the encoding and decoding procedures (Enc,Dec) must be
smaller than the circuit computing the function F .

We prove the following result.

Theorem 19. Let F be any function, and let ΠF be a (t,m)-private MPC protocol
for F , satisfying the correctness and outsourceability properties. Then, the compiler
ΦΠF is a correct, (0, t)-secure, (o(1),m)-outsourcing circuit compiler.

Proof. The correctness property of ΦΠF follows directly by the correctness property
of ΠF . By the outsourceability property of the ΠF , we have that |Enc|+|Dec| = o(|Γ|),
which implies that limκ→∞

|Enc|+|Dec|
|Γ| = 0. Having this in mind we can prove that

the ratio ρ converges to 0, as κ goes to infinity using the expression for ρ, and
assuming Γ̂$ is of constant size:

lim
κ→∞

(|Enc|+ |Dec|+ |Γ̂$|)/|Γ|
1 = 0.

Thus, for sufficiently large κ the outsourcing ration ρ is smaller than 1.
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Let F be any functionality and let Γ be the circuit implementing F . Assuming
that ΠF is a (t,m)-private MPC protocol for F , we will prove that ΦΠF is a (0, t)-
secure, circuit compiler. Concretely (cf. Definition 36), we need to prove that for all
C ⊆ [m] of size at most t, all PPT adversaries A, all circuits Γ, and for all initial
values of the memory M1 ∈ {0, 1}∗, there exists a simulator S with running time
poly(|A|, |Γ[M1]|) such that

{RealA,Φ,C,Γ,M1(κ)}κ∈N ≈c {IdealS,A,Φ,C,Γ,M1,`(κ)}κ∈N , (5.9)

for all sufficiently large values of κ. Let A be an attacker ΦΠF . The idea behind the
proof is to relate the interaction between A and the circuits produced by ΦΠF , with
the interaction between an attacker A′ corrupting up to t, with a protocol ΠF . Then,
we will use the simulator S ′ that is given by the (t,m)-privacy of ΠF to construct a
simulator S, satisfying Eq. (5.9). In what follows, and for the sake of simplicity, we
prove the needed assuming A is a single round attacker, and then we discuss how
the proof easily extends to the setting in which we have multiple executions.

By the compiler definition, the protocol ΠF that ΦΠF is based on, consists of
two clients, C1, C2, where C1 is the corrupted client that provides the public input
to the circuit, X, and C2 supplies the circuit with private input, Mi, and m servers.
Let Γ be the circuit implementing F . Given the adversary A for ΦΠF we define the
adversary A′ = (A′0,A′1) against ΠF as follows:

• (server corruption) A′0: execute (Γ̂, α)← Φ(Γ), where α := ((Γ̂1, . . . , Γ̂n),M,
(I1, . . . , Im)), and sample ({Γ̂′i}i∈I , τ)← A0(1κ, {〈Γ̂i〉}i∈I , 〈Γ〉, 〈Γ̂〉). Then cor-
rupt the server Si, for i ∈ I, so that Si will execute the possibly modified
circuit Γ̂′i.

• (protocol execution) A′1: participate in the protocol ΠF choosing the input
for client C1 (the corrupted client), according to the input value chosen by
A1. Concretely, execute the following steps: sample X ← A1(1κ, τ), define the
input of client C1 to equal to X, receive the output of ΠF for client C1, Y , for
inputs (X,M), and forward Y to A1.

We define the random variable ViewIs,Ic , Is = C, Ic = {1}, to be the view of A while
indirectly interacting with ΠF through A′1. Clearly, by the definition of A′, the view
of A while being executed by A′, matches its view while executing the real world
experiment of Definition 36, thus we have

ViewIs,Ic(λ,X,M) = RealA,Φ,C,Γ,M1(κ). (5.10)

Assuming ΠF is (t,m)-private against A′, there exists exists a simulator S ′′ that
simulates the view of A′ during the protocol execution. Let S′ be code of S ′′ that
only outputs the view of A. Then we have that for all sufficiently large λ ∈ N,

ViewIs,Ic(λ,X,M) ≈c S′(1λ, Ic, Is, (X,Y )i∈Ic). (5.11)

Now we define the simulator S for A against ΦΠF . S on input (1κ, 〈Γ〉,Φ,A, C, 0)
executes the following steps:

• executes A1 with oracle access to Γ[M1](·), and constructs the pair (X,Y ), i.e.,
it constructs the valid output of F on input X, chosen by A1.
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• executes o← S′(λ, Ic, Is, (X,Y )i∈Ic), where Is = C and Ic = {1}, and outputs
o.

Clearly, from Eq. (5.11) we have that S produces outputs which is computationally
indistinghuishable from ViewIs,Ic(λ,X,M), and then using Eq. (5.10) we receive,

RealA,Φ,C,Γ,M1(κ) ≈c IdealS,A,Φ,C,Γ,M1,`(κ),

and this concludes the proof for attackers executing the protocol only once.
For multi-round attackers against the circuit compiler, we need to have multiple,

sequential executions, of the same protocol, as a single execution computes a single
circuit output. Moreover, the attacker is non-adaptive, and corrupts the servers
only before the first protocol execution. By the composition theorem of [Can00], we
have that any secure MPC protocol is also secure against sequential composition,
even for adaptive adversaries. Using a standard hybrid argument, this gives rise to
a simulator, S ′, that simulates the view of the attacker for all protocol executions,
and the proof idea is identical to one given above: we relate the attacker against the
compiler to an attacker against the protocol, and we use S ′ to construct a simulator
S for the circuit compiler.

The case of memory outsourcing is identical to that of the first compiler and we
refer the reader to Remark 1.

Concrete Instantiations

Many MPC protocols satisfy the outsourceability property, as the values that feed the
main computation, i.e., the output of the encoder, are independent of the function
that is being evaluated, and mostly depends on the number of parties, as in the
case of [GMW87] (where the same holds for decoding). An explicit (t,m)-private
protocol is given in [DI05], for t < m/2, in which there is a pre-processing phase that
can be implemented by the encoder, with running time independent of the function
that is being evaluated. The construction uses secure point-to-point and broadcast
channels, that can be implemented directly between the components, and besides
privacy it also guarantees output delivery.

We can also easily adapt the SPDZ protocol [DPSZ12] to the client-server setting.
The SPDZ protocol requires a pre-processing phase that is performed by the parties,
and that will feed the encoder circuit who will perform the actual encoding (which
is only a linear operation). The complete protocol requires a linear number of
public-key operations in the circuit size |Γ|, with the encoder requiring only a linear
number of operations in m. The efficiency of the pre-processing stage can be further
improved [BDTZ16]. This construction does not guarantee output deliver, but it is
secure against adversaries that corrupt up to m− 1 sub-components.

Finally, the construction of [IOZ14] can also be adapted to the client-server
scenario and additionally provides security with identifiable aborts.
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Conclusions

In this thesis we covered different uses of backdoors in cryptography. We gave contri-
butions on the legitimate usage of backdoors (the good) by defining a new security
goal for chameleon hash functions. We also contributed to the better understanding
of the implications and consequences on the malicious uses of backdoors (the bad).
Finally, we contributed with immunization techniques against the malicious use
of backdoors (the not so ugly). We briefly recall our contributions and discuss
implications and future work next.

Chameleon-Hash transformation. We presented the first generic transforma-
tion from any public coin collision-resistant chameleon hash function to a secret
coin enhanced collision-resistant chameleon hash function. The enhanced collision
property can be fundamental for some applications, as we showed in Section 3.3.4
with our blockchain application. A natural direction for improvement of the trans-
formation is to have it from even weaker assumptions. Another open problem is
the possibility of having the transformation from a public coin CH to a public coin
enhanced collision-resistant CH.

Subversion-Resilient signatures. We gave security definitions for signatures re-
silient against subversion attacks and we showed positive results for unique signatures
and re-randomized signatures (by adopting a reverse firewall).

Our study has strong implications in practice and might influence the way digital
signature schemes are selected or adopted in standards and protocols. A subverted
signature scheme is arguably even more deceitful and dangerous in practice than
subverted encryption. Indeed, it is well-known that authenticated encryption must
involve digital certificates that are signed by Certification Authorities (CAs). If a
CA is using a subverted signature scheme, it is reasonable to expect the signing
key will eventually be exposed. With knowledge of the signing key, it is possible to
impersonate any user and carry out elementary man-in-the-middle attacks. This
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renders the use of any type of encryption utterly pointless and underlines the
important role played by signatures in the context of secure communications.

Unfortunately, signature schemes currently employed to sign digital certificates,
or used in protocols such as OTR, TLS/SSL, SSH, etc., are all susceptible to a
subversion attack and their use should possibly be discontinued. The positive news
however is that there already exist signature schemes that are subversion-resilient
and they are efficient and well-established. This is in contrast with encryption where
good schemes are not deployable in all contexts since they require retention of state
information (see [BPR14]).

Open problems in this vein includes the analysis of virtually every cryptographic
primitive under the subversion model.

Secure circuit fabrication. We put forward a simulation-based security defini-
tion for assessing security of ICs whose fabrication has (partially) been outsourced
to an untrusted off-shore manufacturer. Our definition implies a strong guarantee,
essentially saying that no matter how the manufacturer modified the outsourced
IC sub-components, using the re-assembled IC in the wild cannot leak sensitive
information about the private memory.

There are several interesting open questions in this direction. First, it might
be interesting to explore variations of our model, for example by considering the
case where there are several (non-colluding) manufacturers involved in the fabri-
cation process. In such a case, it might be possible to obtain significant efficiency
improvements, e.g., by relying on special VC schemes already suitable for similar
settings [ACG+14].

Second, one could try to instantiate our compilers with specialized VC schemes
that are tailored for specific functionalities. Although there are already some
schemes with this feature—e.g., [FGP14] constructs VC schemes tailored for (multi-
variate) polynomials and linear combinations—to the best of our knowledge, there
is no concrete VC scheme for verifying the computation of a specific cryptographic
functionality (such as AES).

Third, it would be interesting to explore different approaches in order to build
compilers meeting our security definition without relying on verifiable computing or
multiparty computation.
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